-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelicit_activations.py
61 lines (56 loc) · 2.48 KB
/
elicit_activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from peft import PeftModel, PeftConfig
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch as t
from datasets import load_dataset
from tqdm import tqdm
import os
def elicit_activations(adapter_path):
peft_config = PeftConfig.from_pretrained(adapter_path)
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct", trust_remote_code=True, device_map="cuda")
model = PeftModel.from_pretrained(model, adapter_path, device_map="cuda")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct", padding_side="left", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
model.eval()
for p in model.parameters():
p.requires_grad_(False)
# hf = load_dataset("truthfulqa/truthful_qa", "generation")["validation"]
hf = load_dataset("squidWorm/meta_models_emotion_qa")["train"].filter(lambda row: row["Emotion"] == "neutrality")
elicitation_questions = list(set(hf["Question"]))
all_activations = []
batch_size = 32
with t.no_grad():
for i in tqdm(range(0, len(elicitation_questions), batch_size)):
batch = elicitation_questions[i:i+batch_size]
input_ids = tokenizer.apply_chat_template(
[[{"role": "user", "content": question}] for question in batch],
add_generation_prompt=True,
return_tensors="pt",
padding=True
).cuda()
hidden_states = model(input_ids, output_hidden_states=True).hidden_states
activations = t.cat(
[
hidden_states[layer][:, -1, :].unsqueeze(1)
for layer in [16, 20, 24, 28, 32]
],
dim=1
).to("cpu")
all_activations.extend(activations.unbind())
base_name = f"{adapter_path}_activations_"
counter = 0
while os.path.exists(base_name + str(counter)):
counter += 1
filename = base_name + str(counter) + ".pt"
t.save(all_activations, filename)
print("Saved at " + filename)
if __name__ == "__main__":
elicit_activations("v2-grief_0")
elicit_activations("v2-remorse_0")
elicit_activations("v2-nervousness_0")
elicit_activations("v2-annoyance_0")
elicit_activations("v2-gratitude_0")
elicit_activations("v2-relief_0")
elicit_activations("v2-sadness_0")
# elicit_activations("v2-excitment_0")
# elicit_activations("v2-fear_0")
# elicit_activations("v2-disapproval_1")