-
Notifications
You must be signed in to change notification settings - Fork 311
/
Copy pathcstl_algo_mutating.c
734 lines (613 loc) · 26.2 KB
/
cstl_algo_mutating.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
/*
* The implementation of mutating algorithm.
* Copyright (C) 2008 - 2013 Wangbo
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Author e-mail: activesys.wb@gmail.com
* activesys@sina.com.cn
*/
/** include section **/
#include <cstl/cstl_def.h>
#include <cstl/cstl_alloc.h>
#include <cstl/cstl_types.h>
#include <cstl/citerator.h>
#include <cstl/cstring.h>
#include <cstl/cfunctional.h>
#include <cstl/calgorithm.h>
#include "cstl_algo_mutating_aux.h"
/** local constant declaration and local macro section **/
/** local data type declaration and local struct, union, enum section **/
/** local function prototype section **/
/** exported global variable definition section **/
/** local global variable definition section **/
/** exported function implementation section **/
/**
* Assigns the values of elements from a source range to a destination range, iterating through the source sequence of elements and
* assigning them new positions in a forward direction.
*/
output_iterator_t algo_copy(input_iterator_t it_first, input_iterator_t it_last, output_iterator_t it_result)
{
assert(_iterator_valid_range(it_first, it_last, _INPUT_ITERATOR));
assert(_iterator_limit_type(it_result, _OUTPUT_ITERATOR));
assert(_iterator_same_elem_type(it_first, it_result));
for (; !iterator_equal(it_first, it_last); it_first = iterator_next(it_first), it_result = iterator_next(it_result)) {
iterator_set_value(it_result, iterator_get_pointer(it_first));
}
return it_result;
}
/**
* Assigns the values of elements from a source range to a destination range, iterating through the source sequence of elements and
* assigning them new positions in a forward direction.
*/
output_iterator_t algo_copy_n(input_iterator_t it_first, size_t t_count, output_iterator_t it_result)
{
return algo_copy(it_first, iterator_advance(it_first, t_count), it_result);
}
/**
* Assigns the values of elements from a source range to a destination range, iterating through the source sequence of elements and
* assigning them new positions in a backward direction.
*/
bidirectional_iterator_t algo_copy_backward(
bidirectional_iterator_t it_first, bidirectional_iterator_t it_last, bidirectional_iterator_t it_result)
{
assert(_iterator_valid_range(it_first, it_last, _BIDIRECTIONAL_ITERATOR));
assert(_iterator_limit_type(it_result, _BIDIRECTIONAL_ITERATOR));
assert(_iterator_same_elem_type(it_first, it_result));
while (!iterator_equal(it_first, it_last)) {
it_last = iterator_prev(it_last);
it_result = iterator_prev(it_result);
iterator_set_value(it_result, iterator_get_pointer(it_last));
}
return it_result;
}
/**
* Exchanges two values referred to by a pair of specified iterators.
*/
void algo_swap(forward_iterator_t it_first, forward_iterator_t it_second)
{
algo_iter_swap(it_first, it_second);
}
/**
* Exchanges two values referred to by a pair of specified iterators.
*/
void algo_iter_swap(forward_iterator_t it_first, forward_iterator_t it_second)
{
void* pv_value = NULL;
assert(_iterator_limit_type(it_first, _FORWARD_ITERATOR));
assert(_iterator_limit_type(it_second, _FORWARD_ITERATOR));
assert(_iterator_same_elem_type(it_first, it_second));
if (!iterator_equal(it_first, it_second)) {
pv_value = _iterator_allocate_init_elem(it_first);
if (strncmp(_iterator_get_typebasename(it_first), _C_STRING_TYPE, _TYPE_NAME_SIZE) == 0) {
string_assign_cstr((string_t*)pv_value, iterator_get_pointer(it_first));
iterator_set_value(it_first, iterator_get_pointer(it_second));
iterator_set_value(it_second, string_c_str((string_t*)pv_value));
} else {
iterator_get_value(it_first, pv_value);
iterator_set_value(it_first, iterator_get_pointer(it_second));
iterator_set_value(it_second, pv_value);
}
_iterator_deallocate_destroy_elem(it_first, pv_value);
pv_value = NULL;
}
}
/**
* Exchanges the elements of one range with the elements of another, equal sized range.
*/
forward_iterator_t algo_swap_ranges(forward_iterator_t it_first1, forward_iterator_t it_last1, forward_iterator_t it_first2)
{
assert(_iterator_valid_range(it_first1, it_last1, _FORWARD_ITERATOR));
assert(_iterator_limit_type(it_first2, _FORWARD_ITERATOR));
assert(_iterator_same_elem_type(it_first1, it_first2));
for (; !iterator_equal(it_first1, it_last1); it_first1 = iterator_next(it_first1), it_first2 = iterator_next(it_first2)) {
algo_iter_swap(it_first1, it_first2);
}
return it_first2;
}
/**
* Applies a specified function object to each element in a source range and copies the return values of the function object into a destination range.
*/
output_iterator_t algo_transform(
input_iterator_t it_first, input_iterator_t it_last, output_iterator_t it_result, ufun_t ufun_op)
{
void* pv_value = NULL;
assert(_iterator_valid_range(it_first, it_last, _INPUT_ITERATOR));
assert(_iterator_same_elem_type(it_first, it_result));
assert(_iterator_limit_type(it_result, _OUTPUT_ITERATOR));
if (ufun_op == NULL) {
ufun_op = fun_default_unary;
}
pv_value = _iterator_allocate_init_elem(it_first);
if (strncmp(_iterator_get_typebasename(it_first), _C_STRING_TYPE, _TYPE_NAME_SIZE) == 0) {
for (; !iterator_equal(it_first, it_last); it_first = iterator_next(it_first), it_result = iterator_next(it_result)) {
string_assign_cstr((string_t*)pv_value, (char*)iterator_get_pointer(it_first));
(*ufun_op)(iterator_get_pointer(it_first), (char*)string_c_str((string_t*)pv_value));
iterator_set_value(it_result, string_c_str((string_t*)pv_value));
}
} else {
for (; !iterator_equal(it_first, it_last); it_first = iterator_next(it_first), it_result = iterator_next(it_result)) {
(*ufun_op)(iterator_get_pointer(it_first), pv_value);
iterator_set_value(it_result, pv_value);
}
}
_iterator_deallocate_destroy_elem(it_first, pv_value);
pv_value = NULL;
return it_result;
}
/**
* Applies a specified function object to a pair of elements from two source ranges and copies the return values of the function into a destination range.
*/
output_iterator_t algo_transform_binary(
input_iterator_t it_first1, input_iterator_t it_last1,
input_iterator_t it_first2, output_iterator_t it_result,
bfun_t bfun_op)
{
void* pv_value = NULL;
assert(_iterator_valid_range(it_first1, it_last1, _INPUT_ITERATOR));
assert(_iterator_same_elem_type(it_first1, it_first2));
assert(_iterator_limit_type(it_first2, _INPUT_ITERATOR));
assert(_iterator_same_elem_type(it_first1, it_result));
assert(_iterator_limit_type(it_result, _OUTPUT_ITERATOR));
if (bfun_op == NULL) {
bfun_op = fun_default_binary;
}
pv_value = _iterator_allocate_init_elem(it_first1);
if (strncmp(_iterator_get_typebasename(it_first1), _C_STRING_TYPE, _TYPE_NAME_SIZE) == 0) {
for (;
!iterator_equal(it_first1, it_last1);
it_first1 = iterator_next(it_first1),
it_first2 = iterator_next(it_first2),
it_result = iterator_next(it_result)) {
(*bfun_op)(iterator_get_pointer(it_first1), iterator_get_pointer(it_first2), (char*)string_c_str((string_t*)pv_value));
iterator_set_value(it_result, string_c_str((string_t*)pv_value));
}
} else {
for (;
!iterator_equal(it_first1, it_last1);
it_first1 = iterator_next(it_first1),
it_first2 = iterator_next(it_first2),
it_result = iterator_next(it_result)) {
(*bfun_op)(iterator_get_pointer(it_first1), iterator_get_pointer(it_first2), pv_value);
iterator_set_value(it_result, pv_value);
}
}
_iterator_deallocate_destroy_elem(it_first1, pv_value);
pv_value = NULL;
return it_result;
}
/**
* Assigns the values generated by a unary function to each element in a range.
*/
void algo_generate(forward_iterator_t it_first, forward_iterator_t it_last, ufun_t ufun_op)
{
void* pv_value = NULL;
assert(_iterator_valid_range(it_first, it_last, _FORWARD_ITERATOR));
if (ufun_op == NULL) {
ufun_op = fun_default_unary;
}
pv_value = _iterator_allocate_init_elem(it_first);
if (strncmp(_iterator_get_typebasename(it_first), _C_STRING_TYPE, _TYPE_NAME_SIZE) == 0) {
for (; !iterator_equal(it_first, it_last); it_first = iterator_next(it_first)) {
string_assign_cstr((string_t*)pv_value, (char*)iterator_get_pointer(it_first));
(*ufun_op)(string_c_str((string_t*)pv_value), (char*)string_c_str((string_t*)pv_value));
iterator_set_value(it_first, string_c_str((string_t*)pv_value));
}
} else {
for (; !iterator_equal(it_first, it_last); it_first = iterator_next(it_first)) {
iterator_get_value(it_first, pv_value);
(*ufun_op)(pv_value, pv_value);
iterator_set_value(it_first, pv_value);
}
}
_iterator_deallocate_destroy_elem(it_first, pv_value);
pv_value = NULL;
}
/**
* Assigns the values generated by a unary function to a specified number of element in a range and returns to the position one past the last assigned value.
*/
output_iterator_t algo_generate_n(output_iterator_t it_first, size_t t_count, ufun_t ufun_op)
{
size_t i = 0;
void* pv_value = NULL;
assert(_iterator_limit_type(it_first, _OUTPUT_ITERATOR));
if (ufun_op == NULL) {
ufun_op = fun_default_unary;
}
pv_value = _iterator_allocate_init_elem(it_first);
if (strncmp(_iterator_get_typebasename(it_first), _C_STRING_TYPE, _TYPE_NAME_SIZE) == 0) {
for (i = 0; i < t_count; ++i, it_first = iterator_next(it_first)) {
string_assign_cstr((string_t*)pv_value, (char*)iterator_get_pointer(it_first));
(*ufun_op)(string_c_str((string_t*)pv_value), (char*)string_c_str((string_t*)pv_value));
iterator_set_value(it_first, string_c_str((string_t*)pv_value));
}
} else {
for (i = 0; i < t_count; ++i, it_first = iterator_next(it_first)) {
iterator_get_value(it_first, pv_value);
(*ufun_op)(pv_value, pv_value);
iterator_set_value(it_first, pv_value);
}
}
_iterator_deallocate_destroy_elem(it_first, pv_value);
pv_value = NULL;
return it_first;
}
/**
* Eliminates elements that satisfy a predicate from a given range without disturbing the order of the remaining elements and
* returning the end of a new range free of the specified value.
*/
forward_iterator_t algo_remove_if(forward_iterator_t it_first, forward_iterator_t it_last, ufun_t ufun_op)
{
iterator_t it_next;
assert(_iterator_valid_range(it_first, it_last, _FORWARD_ITERATOR));
it_first = algo_find_if(it_first, it_last, ufun_op);
if (iterator_equal(it_first, it_last)) {
return it_first;
} else {
it_next = iterator_next(it_first);
return algo_remove_copy_if(it_next, it_last, it_first, ufun_op);
}
}
/**
* Copies elements from a source range to a destination range, except that satisfying a predicate are not copied, without disturbing the order of the remaining
* elements and returning the end of a new destination range.
*/
output_iterator_t algo_remove_copy_if(input_iterator_t it_first, input_iterator_t it_last, output_iterator_t it_result, ufun_t ufun_op)
{
bool_t b_cmp = false;
assert(_iterator_valid_range(it_first, it_last, _INPUT_ITERATOR));
assert(_iterator_same_elem_type(it_first, it_result));
if (ufun_op == NULL) {
ufun_op = fun_default_unary;
}
for (; !iterator_equal(it_first, it_last); it_first = iterator_next(it_first)) {
(*ufun_op)(iterator_get_pointer(it_first), &b_cmp);
if (!b_cmp) {
iterator_set_value(it_result, iterator_get_pointer(it_first));
it_result = iterator_next(it_result);
}
}
return it_result;
}
/**
* Removes duplicate elements that are adjacent to each other in a specified range.
*/
forward_iterator_t algo_unique(forward_iterator_t it_first, forward_iterator_t it_last)
{
return algo_unique_if(it_first, it_last, _fun_get_binary(it_first, _EQUAL_FUN));
}
/**
* Removes duplicate elements that are adjacent to each other in a specified range.
*/
forward_iterator_t algo_unique_if(forward_iterator_t it_first, forward_iterator_t it_last, bfun_t bfun_op)
{
assert(_iterator_valid_range(it_first, it_last, _FORWARD_ITERATOR));
it_first = algo_adjacent_find_if(it_first, it_last, bfun_op);
return algo_unique_copy_if(it_first, it_last, it_first, bfun_op);
}
/**
* Copies elements from a source range into a destination range except for the duplicate elements that are adjacent to each other.
*/
output_iterator_t algo_unique_copy(input_iterator_t it_first, input_iterator_t it_last, output_iterator_t it_result)
{
return algo_unique_copy_if(it_first, it_last, it_result, _fun_get_binary(it_first, _EQUAL_FUN));
}
/**
* Copies elements from a source range into a destination range except for the duplicate elements that are adjacent to each other.
*/
output_iterator_t algo_unique_copy_if(input_iterator_t it_first, input_iterator_t it_last, output_iterator_t it_result, bfun_t bfun_op)
{
bool_t b_cmp = false;
bool_t b_less = false;
bool_t b_greater = false;
assert(_iterator_valid_range(it_first, it_last, _INPUT_ITERATOR));
assert(_iterator_limit_type(it_result, _OUTPUT_ITERATOR));
assert(_iterator_same_elem_type(it_first, it_result));
if (bfun_op == NULL) {
bfun_op = _fun_get_binary(it_first, _EQUAL_FUN);
}
if (iterator_equal(it_first, it_last)) {
return it_result;
}
if (bfun_op == fun_default_binary) {
bfun_op = _fun_get_binary(it_first, _LESS_FUN);
iterator_set_value(it_result, iterator_get_pointer(it_first));
it_first = iterator_next(it_first);
for (; !iterator_equal(it_first, it_last); it_first = iterator_next(it_first)) {
(*bfun_op)(iterator_get_pointer(it_result), iterator_get_pointer(it_first), &b_less);
if (b_less) {
it_result = iterator_next(it_result);
iterator_set_value(it_result, iterator_get_pointer(it_first));
continue;
}
(*bfun_op)(iterator_get_pointer(it_first), iterator_get_pointer(it_result), &b_greater);
if (b_greater) {
it_result = iterator_next(it_result);
iterator_set_value(it_result, iterator_get_pointer(it_first));
continue;
}
}
} else {
iterator_set_value(it_result, iterator_get_pointer(it_first));
it_first = iterator_next(it_first);
for (; !iterator_equal(it_first, it_last); it_first = iterator_next(it_first)) {
(*bfun_op)(iterator_get_pointer(it_result), iterator_get_pointer(it_first), &b_cmp);
if (!b_cmp) {
it_result = iterator_next(it_result);
iterator_set_value(it_result, iterator_get_pointer(it_first));
}
}
}
it_result = iterator_next(it_result);
return it_result;
}
/**
* Reverses the order of the elements within a range.
*/
void algo_reverse(bidirectional_iterator_t it_first, bidirectional_iterator_t it_last)
{
assert(_iterator_valid_range(it_first, it_last, _BIDIRECTIONAL_ITERATOR));
for (;;) {
if (iterator_equal(it_first, it_last)) {
return;
}
it_last = iterator_prev(it_last);
if (iterator_equal(it_first, it_last)) {
return;
}
algo_iter_swap(it_first, it_last);
it_first = iterator_next(it_first);
}
}
/**
* Reverses the order of the elements within a source range while copying them into a destination range
*/
output_iterator_t algo_reverse_copy(bidirectional_iterator_t it_first, bidirectional_iterator_t it_last, output_iterator_t it_result)
{
assert(_iterator_valid_range(it_first, it_last, _BIDIRECTIONAL_ITERATOR));
assert(_iterator_limit_type(it_result, _OUTPUT_ITERATOR));
assert(_iterator_same_elem_type(it_first, it_result));
while (!iterator_equal(it_first, it_last)) {
it_last = iterator_prev(it_last);
iterator_set_value(it_result, iterator_get_pointer(it_last));
it_result = iterator_next(it_result);
}
return it_result;
}
/**
* Exchanges the elements in two adjacent ranges.
*/
forward_iterator_t algo_rotate(forward_iterator_t it_first, forward_iterator_t it_middle, forward_iterator_t it_last)
{
size_t t_distance = 0;
assert(_iterator_valid_range(it_first, it_middle, _FORWARD_ITERATOR));
assert(_iterator_valid_range(it_middle, it_last, _FORWARD_ITERATOR));
if (iterator_equal(it_first, it_middle) || iterator_equal(it_middle, it_last)) {
return it_middle;
}
t_distance = iterator_distance(it_middle, it_last);
if (_ITERATOR_ITERATOR_TYPE(it_first) == _FORWARD_ITERATOR &&
_ITERATOR_ITERATOR_TYPE(it_middle) == _FORWARD_ITERATOR &&
_ITERATOR_ITERATOR_TYPE(it_last) == _FORWARD_ITERATOR) {
_algo_rotate_forward(it_first, it_middle, it_last);
} else {
algo_reverse(it_first, it_middle);
algo_reverse(it_middle, it_last);
algo_reverse(it_first, it_last);
}
it_middle = iterator_advance(it_first, t_distance);
return it_middle;
}
/**
* Exchanges the elements in two adjacent ranges within a source range and copies the result to a destination range.
*/
output_iterator_t algo_rotate_copy(forward_iterator_t it_first, forward_iterator_t it_middle, forward_iterator_t it_last, output_iterator_t it_result)
{
assert(_iterator_valid_range(it_first, it_middle, _FORWARD_ITERATOR));
assert(_iterator_valid_range(it_middle, it_last, _FORWARD_ITERATOR));
assert(_iterator_limit_type(it_result, _OUTPUT_ITERATOR));
assert(_iterator_same_elem_type(it_first, it_result));
return algo_copy(it_first, it_middle, algo_copy(it_middle, it_last, it_result));
}
/**
* Rearranges a sequence of N elements in a range into one of N! possible arrangements selected at random.
*/
void algo_random_shuffle(random_access_iterator_t it_first, random_access_iterator_t it_last)
{
algo_random_shuffle_if(it_first, it_last, fun_random_number);
}
/**
* Rearranges a sequence of N elements in a range into one of N! possible arrangements selected at random.
*/
void algo_random_shuffle_if(random_access_iterator_t it_first, random_access_iterator_t it_last, ufun_t ufun_op)
{
iterator_t it_iter;
iterator_t it_tmp;
size_t t_len = 0;
size_t t_random = 0;
assert(_iterator_valid_range(it_first, it_last, _RANDOM_ACCESS_ITERATOR));
if (ufun_op == NULL) {
ufun_op = fun_default_unary;
}
if (!iterator_equal(it_first, it_last)) {
for (it_iter = iterator_next(it_first); !iterator_equal(it_iter, it_last); it_iter = iterator_next(it_iter)) {
t_len = iterator_distance(it_first, it_iter) + 1;
(*ufun_op)(&t_len, &t_random);
if (t_len != 0) {
t_random %= t_len;
}
it_tmp = iterator_advance(it_first, t_random);
algo_iter_swap(it_iter, it_tmp);
}
}
}
/**
* Copy a sample of the elements from the range [it_first1, it_last1) into the range [it_first2, it_last2).
*/
random_access_iterator_t algo_random_sample(
input_iterator_t it_first1, input_iterator_t it_last1, random_access_iterator_t it_first2, random_access_iterator_t it_last2)
{
return algo_random_sample_if(it_first1, it_last1, it_first2, it_last2, fun_random_number);
}
/**
* Copy a sample of the elements from the range [it_first1, it_last1) into the range [it_first2, it_last2).
*/
random_access_iterator_t algo_random_sample_if(
input_iterator_t it_first1, input_iterator_t it_last1, random_access_iterator_t it_first2, random_access_iterator_t it_last2, ufun_t ufun_op)
{
iterator_t it_in;
iterator_t it_out;
size_t t_outlen = 0;
size_t t_inlen = 0;
size_t t_random = 0;
assert(_iterator_valid_range(it_first1, it_last1, _INPUT_ITERATOR));
assert(_iterator_valid_range(it_first2, it_last2, _RANDOM_ACCESS_ITERATOR));
assert(_iterator_same_elem_type(it_first1, it_first2));
if (ufun_op == NULL) {
ufun_op = fun_default_unary;
}
for (it_in = it_first1, it_out = it_first2;
!iterator_equal(it_in, it_last1) && !iterator_equal(it_out, it_last2);
it_in = iterator_next(it_in), it_out = iterator_next(it_out)) {
iterator_set_value(it_out, iterator_get_pointer(it_in));
}
t_inlen = iterator_distance(it_first1, it_last1);
t_outlen = iterator_distance(it_first2, it_last2);
for (; !iterator_equal(it_in, it_last1); it_in = iterator_next(it_in)) {
t_inlen++;
(*ufun_op)(&t_inlen, &t_random);
t_random %= t_inlen;
if (t_random < t_outlen) {
it_out = iterator_advance(it_first2, t_random);
iterator_set_value(it_out, iterator_get_pointer(it_in));
}
}
return iterator_advance(it_first2, t_outlen < t_inlen ? t_outlen : t_inlen);
}
/**
* Copy a sample of the elements from the range [it_first1, it_last1) into the range [it_first2, it_first2 + t_count).
*/
output_iterator_t algo_random_sample_n(
input_iterator_t it_first, input_iterator_t it_last, output_iterator_t it_result, size_t t_count)
{
return algo_random_sample_n_if(it_first, it_last, it_result, t_count, fun_random_number);
}
/**
* Copy a sample of the elements from the range [it_first1, it_last1) into the range [it_first2, it_first2 + t_count).
*/
output_iterator_t algo_random_sample_n_if(
input_iterator_t it_first, input_iterator_t it_last, output_iterator_t it_result, size_t t_count, ufun_t ufun_op)
{
size_t t_len = 0;
size_t t_tmp = 0;
size_t t_random = 0;
assert(_iterator_valid_range(it_first, it_last, _INPUT_ITERATOR));
assert(_iterator_limit_type(it_result, _OUTPUT_ITERATOR));
assert(_iterator_same_elem_type(it_first, it_result));
if (ufun_op == NULL) {
ufun_op = fun_default_unary;
}
t_len = iterator_distance(it_first, it_last);
t_tmp = t_count < t_len ? t_count : t_len;
while (t_tmp > 0) {
(*ufun_op)(&t_len, &t_random);
if (t_len != 0) {
t_random %= t_len;
}
if (t_random < t_tmp) {
iterator_set_value(it_result, iterator_get_pointer(it_first));
it_result = iterator_next(it_result);
t_tmp--;
}
it_first = iterator_next(it_first);
t_len--;
}
return it_result;
}
/**
* Classifies elements in a range into two disjoint sets, with those elements satisfying a unary predicate preceding those that fail to satisfy it.
*/
forward_iterator_t algo_partition(forward_iterator_t it_first, forward_iterator_t it_last, ufun_t ufun_op)
{
bool_t b_result = false;
iterator_t it_next;
assert(_iterator_valid_range(it_first, it_last, _FORWARD_ITERATOR));
if ((_ITERATOR_ITERATOR_TYPE(it_first) == _BIDIRECTIONAL_ITERATOR && _ITERATOR_ITERATOR_TYPE(it_last) == _BIDIRECTIONAL_ITERATOR) ||
(_ITERATOR_ITERATOR_TYPE(it_first) == _RANDOM_ACCESS_ITERATOR && _ITERATOR_ITERATOR_TYPE(it_first) == _RANDOM_ACCESS_ITERATOR)) {
return _algo_partition_biditer(it_first, it_last, ufun_op);
}
if (ufun_op == NULL) {
ufun_op = fun_default_unary;
}
if (iterator_equal(it_first, it_last)) {
return it_first;
}
while (!iterator_equal(it_first, it_last)) {
(*ufun_op)(iterator_get_pointer(it_first), &b_result);
if (!b_result) {
for (it_next = iterator_next(it_first); !iterator_equal(it_next, it_last); it_next = iterator_next(it_next)) {
(*ufun_op)(iterator_get_pointer(it_next), &b_result);
if (b_result) {
algo_iter_swap(it_first, it_next);
break;
}
}
if (iterator_equal(it_next, it_last)) {
return it_first;
}
}
it_first = iterator_next(it_first);
}
return it_first;
}
/**
* Classifies elements in a range into two disjoint sets, with those elements satisfying a unary predicate preceding those that fail to satisfy it,
* preserving the relative order of equivalent elements.
*/
forward_iterator_t algo_stable_partition(forward_iterator_t it_first, forward_iterator_t it_last, ufun_t ufun_op)
{
bool_t b_result = false;
iterator_t it_next;
iterator_t it_index;
assert(_iterator_valid_range(it_first, it_last, _FORWARD_ITERATOR));
if (ufun_op == NULL) {
ufun_op = fun_default_unary;
}
if (iterator_equal(it_first, it_last)) {
return it_first;
}
while (!iterator_equal(it_first, it_last)) {
(*ufun_op)(iterator_get_pointer(it_first), &b_result);
if (!b_result) {
for (it_next = iterator_next(it_first); !iterator_equal(it_next, it_last); it_next = iterator_next(it_next)) {
(*ufun_op)(iterator_get_pointer(it_next), &b_result);
if (b_result) {
it_index = it_first;
do {
it_index = iterator_next(it_index);
algo_iter_swap(it_first, it_index);
} while (!iterator_equal(it_index, it_next));
break;
}
}
if (iterator_equal(it_next, it_last)) {
return it_first;
}
}
it_first = iterator_next(it_first);
}
return it_first;
}
/** eof **/