-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathseg.py
374 lines (298 loc) · 13.5 KB
/
seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
"""
segmentation tools for neurite
If you use this code, please cite the following, and read function docs for further info/citations
Dalca AV, Guttag J, Sabuncu MR
Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation,
CVPR 2018. https://arxiv.org/abs/1903.03148
Copyright 2020 Adrian V. Dalca
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under
the License.
"""
# python imports
import itertools
# third party imports
import numpy as np
from tqdm import tqdm_notebook as tqdm
from pprint import pformat
import tensorflow as tf
from tensorflow import keras
import tensorflow.keras.backend as K
# local imports
import neurite as ne
import neurite.py.utils
import pystrum.pynd.ndutils as nd
import pystrum.pynd.patchlib as pl
import pystrum.pytools.timer as timer
def predict_volumes(models,
data_generator,
batch_size,
patch_size,
patch_stride,
grid_size,
nan_func=np.nanmedian,
do_extra_vol=False, # should compute vols beyond label
do_prob_of_true=False, # should compute prob_of_true vols
verbose=False):
"""
Note: we allow models to be a list or a single model.
Normally, if you'd like to run a function over a list for some param,
you can simply loop outside of the function. here, however, we are dealing with a generator,
and want the output of that generator to be consistent for each model.
Returns:
if models isa list of more than one model:
a tuple of model entried, each entry is a tuple of:
true_label, pred_label, <vol>, <prior_label>, <pred_prob_of_true>, <prior_prob_of_true>
if models is just one model:
a tuple of
(true_label, pred_label, <vol>, <prior_label>, <pred_prob_of_true>, <prior_prob_of_true>)
TODO: could add prior
"""
if not isinstance(models, (list, tuple)):
models = (models,)
# get the input and prediction stack
with timer.Timer('predict_volume_stack', verbose):
vol_stack = predict_volume_stack(models,
data_generator,
batch_size,
grid_size,
verbose)
if len(models) == 1:
do_prior = len(vol_stack) == 4
else:
do_prior = len(vol_stack[0]) == 4
# go through models and volumes
ret = ()
for midx, _ in enumerate(models):
stack = vol_stack if len(models) == 1 else vol_stack[midx]
if do_prior:
all_true, all_pred, all_vol, all_prior = stack
else:
all_true, all_pred, all_vol = stack
# get max labels
all_true_label, all_pred_label = pred_to_label(all_true, all_pred)
# quilt volumes and aggregate overlapping patches, if any
args = [patch_size, grid_size, patch_stride]
label_kwargs = {'nan_func_layers': nan_func, 'nan_func_K': nan_func, 'verbose': verbose}
vol_true_label = _quilt(all_true_label, *args, **label_kwargs).astype('int')
vol_pred_label = _quilt(all_pred_label, *args, **label_kwargs).astype('int')
ret_set = (vol_true_label, vol_pred_label)
if do_extra_vol:
vol_input = _quilt(all_vol, *args)
ret_set += (vol_input, )
if do_prior:
all_prior_label, = pred_to_label(all_prior)
vol_prior_label = _quilt(all_prior_label, *args, **label_kwargs).astype('int')
ret_set += (vol_prior_label, )
# compute the probability of prediction and prior
# instead of quilting the probabilistic volumes and then computing the probability
# of true label, which takes a long time, we'll first compute the probability of label,
# and then quilt. This is faster, but we'll need to take median votes
if do_extra_vol and do_prob_of_true:
all_pp = prob_of_label(all_pred, all_true_label)
pred_prob_of_true = _quilt(all_pp, *args, **label_kwargs)
ret_set += (pred_prob_of_true, )
if do_prior:
all_pp = prob_of_label(all_prior, all_true_label)
prior_prob_of_true = _quilt(all_pp, *args, **label_kwargs)
ret_set += (prior_prob_of_true, )
ret += (ret_set, )
if len(models) == 1:
ret = ret[0]
# return
return ret
def predict_volume_stack(models,
data_generator,
batch_size,
grid_size,
verbose=False):
"""
predict all the patches in a volume
requires batch_size to be a divisor of the number of patches (prod(grid_size))
Note: we allow models to be a list or a single model.
Normally, if you'd like to run a function over a list for some param,
you can simply loop outside of the function. here, however, we are dealing with a generator,
and want the output of that generator to be consistent for each model.
Returns:
if models isa list of more than one model:
a tuple of model entried, each entry is a tuple of:
all_true, all_pred, all_vol, <all_prior>
if models is just one model:
a tuple of
all_true, all_pred, all_vol, <all_prior>
"""
if not isinstance(models, (list, tuple)):
models = (models,)
# compute the number of batches we need for one volume
# we need the batch_size to be a divisor of nb_patches,
# in order to loop through batches and form full volumes
nb_patches = np.prod(grid_size)
# assert np.mod(nb_patches, batch_size) == 0, \
# "batch_size %d should be a divisor of nb_patches %d" %(batch_size, nb_patches)
nb_batches = ((nb_patches - 1) // batch_size) + 1
# go through the patches
batch_gen = tqdm(range(nb_batches)) if verbose else range(nb_batches)
for batch_idx in batch_gen:
sample = next(data_generator)
nb_vox = np.prod(sample[1].shape[1:-1])
do_prior = isinstance(sample[0], (list, tuple))
# pre-allocate all the data
if batch_idx == 0:
nb_labels = sample[1].shape[-1]
all_vol = [np.zeros((nb_patches, nb_vox)) for f in models]
all_true = [np.zeros((nb_patches, nb_vox * nb_labels)) for f in models]
all_pred = [np.zeros((nb_patches, nb_vox * nb_labels)) for f in models]
all_prior = [np.zeros((nb_patches, nb_vox * nb_labels)) for f in models]
# get in_vol, y_true, y_pred
for idx, model in enumerate(models):
# with timer.Timer('prediction', verbose):
pred = model.predict(sample[0])
assert pred.shape[0] == batch_size, \
"batch size mismatch. sample has batch size %d, given batch size is %d" % (
pred.shape[0], batch_size)
input_batch = sample[0] if not do_prior else sample[0][0]
# compute batch range
batch_start = batch_idx * batch_size
batch_end = np.minimum(batch_start + batch_size, nb_patches)
batch_range = np.arange(batch_start, batch_end)
batch_vox_idx = batch_end - batch_start
# update stacks
all_vol[idx][batch_range, :] = K.batch_flatten(input_batch)[0:batch_vox_idx, :]
all_true[idx][batch_range, :] = K.batch_flatten(sample[1])[0:batch_vox_idx, :]
all_pred[idx][batch_range, :] = K.batch_flatten(pred)[0:batch_vox_idx, :]
if do_prior:
all_prior[idx][batch_range, :] = K.batch_flatten(sample[0][1])[0:batch_vox_idx, :]
# reshape probabilistic answers
for idx, _ in enumerate(models):
all_true[idx] = np.reshape(all_true[idx], [nb_patches, nb_vox, nb_labels])
all_pred[idx] = np.reshape(all_pred[idx], [nb_patches, nb_vox, nb_labels])
if do_prior:
all_prior[idx] = np.reshape(all_prior[idx], [nb_patches, nb_vox, nb_labels])
# prepare output tuple
ret = ()
for midx, _ in enumerate(models):
if do_prior:
ret += ((all_true[midx], all_pred[midx], all_vol[midx], all_prior[midx]), )
else:
ret += ((all_true[midx], all_pred[midx], all_vol[midx]), )
if len(models) == 1:
ret = ret[0]
return ret
def prob_of_label(vol, labelvol):
"""
compute the probability of the labels in labelvol in each of the volumes in vols
Parameters:
vol (float numpy array of dim (nd + 1): volume with a prob dist at each voxel in a nd vols
labelvol (int numpy array of dim nd): nd volume of labels
Returns:
nd volume of probabilities
"""
# check dimensions
nb_dims = np.ndim(labelvol)
assert np.ndim(vol) == nb_dims + \
1, "vol dimensions do not match [%d] vs [%d]" % (np.ndim(vol) - 1, nb_dims)
shp = vol.shape
nb_voxels = np.prod(shp[0:nb_dims])
nb_labels = shp[-1]
# reshape volume to be [nb_voxels, nb_labels]
flat_vol = np.reshape(vol, (nb_voxels, nb_labels))
# normalize accross second dimension
rows_sums = flat_vol.sum(axis=1)
flat_vol_norm = flat_vol / rows_sums[:, np.newaxis]
# index into the flattened volume
idx = list(range(nb_voxels))
v = flat_vol_norm[idx, labelvol.flat]
return np.reshape(v, labelvol.shape)
def next_pred_label(model, data_generator, verbose=False):
"""
predict the next sample batch from the generator, and compute max labels
return sample, prediction, max_labels
"""
sample = next(data_generator)
with timer.Timer('prediction', verbose):
pred = model.predict(sample[0])
sample_input = sample[0] if not isinstance(sample[0], (list, tuple)) else sample[0][0]
max_labels = pred_to_label(sample_input, pred)
return (sample, pred) + max_labels
def next_label(model, data_generator):
"""
predict the next sample batch from the generator, and compute max labels
return max_labels
"""
batch_proc = next_pred_label(model, data_generator)
return (batch_proc[2], batch_proc[3])
def sample_to_label(model, sample):
"""
redict a sample batch and compute max labels
return max_labels
"""
# predict output for a new sample
res = model.predict(sample[0])
# return
return pred_to_label(sample[1], res)
def pred_to_label(*y):
"""
return the true and predicted labels given true and predicted nD+1 volumes
"""
# compute resulting volume(s)
return tuple(np.argmax(f, -1).astype(int) for f in y)
def next_vol_pred(model, data_generator, verbose=False):
"""
get the next batch, predict model output
returns (input_vol, y_true, y_pred, <prior>)
"""
# batch to input, output and prediction
sample = next(data_generator)
with timer.Timer('prediction', verbose):
pred = model.predict(sample[0])
data = (sample[0], sample[1], pred)
if isinstance(sample[0], (list, tuple)): # if given prior, might be a list
data = (sample[0][0], sample[1], pred, sample[0][1])
return data
def recode(seg, mapping, max_label=None):
"""
Recodes a discrete segmentation via a label mapping.
Parameters:
seg: Segmentation tensor to recode.
mapping: Label index map. Can be list, dict, or RecodingLookupTable. If list,
max_label must be provided.
max_label: Maximum label that might exist in the input segmentation. This will be
extrapolated from the mapping if not provided, but it's important to note that
if the mapping does not include the max possible label, tensorflow will throw
an error during the gather operation.
Returns:
Recoded tensor.
"""
# convert mapping to valid dictionary
if isinstance(mapping, (list, tuple, np.ndarray)):
mapping = {l: i + 1 for i, l in enumerate(mapping)}
elif hasattr(mapping, 'mapping'):
# support FS RecodingLookupTable
mapping = mapping.mapping
elif not isinstance(mapping, dict):
raise ValueError('Invalid mapping type %s.' % type(mapping).__name__)
# convert mapping to relabeling lookup for tensorflow gather
in_labels = np.int32(np.unique(list(mapping.keys())))
max_label = np.max(in_labels) if max_label is None else max_label
lookup = np.zeros(max_label + 1, dtype=np.float32)
for src, trg in mapping.items():
lookup[src] = trg
# gather indices from lookup
recoded_seg = tf.gather(lookup, indices=seg)
return recoded_seg
###############################################################################
# helper functions
###############################################################################
def _quilt(patches, patch_size, grid_size, patch_stride, verbose=False, **kwargs):
assert len(patches.shape) >= 2, "patches has bad shape %s" % pformat(patches.shape)
# reshape to be [nb_patches x nb_vox]
patches = np.reshape(patches, (patches.shape[0], -1, 1))
# quilt
quilted_vol = pl.quilt(patches, patch_size, grid_size, patch_stride=patch_stride, **kwargs)
assert quilted_vol.ndim == len(patch_size), "problem with dimensions after quilt"
# return
return quilted_vol