-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobot.js
217 lines (168 loc) · 5.75 KB
/
robot.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
class Creature {
constructor(pos, brain, generation) {
this.initBody(pos);
this.initBrain(brain);
this.score = 0;
this.fitness = 0;
this.generation = generation;
// console.log("gen: "+this.generation);
}
initBrain(brain) {
if (brain instanceof NeuralNetwork) {
this.brain = brain.copy();
this.brain.mutate(0.1);
} else if (Array.isArray(brain)) {
this.brain = new NeuralNetwork(brain[0], brain[1], brain[2]);
}
}
initBody(pos) {
throw new Error("initBody not implemented");
}
copy() {
throw new Error("copy not implemented");
}
show() {
throw new Error("show not implemented");
}
think() {
throw new Error("think not implemented");
}
move(cmds, targetPos) {
throw new Error("think not implemented");
}
calculateScore(targetPos) {
let distance = this.pos.dist(targetPos);
let startDistance = this.startPos.dist(targetPos);
let localScore = Math.max(0, startDistance - distance);
this.score = Math.max(this.score, localScore);
}
}
const EYE_SIZE = 12;
class Eye {
constructor(fov, pos, angle) {
this.fov = radians(fov);
this.size = EYE_SIZE;
this.updateEyeCoords();
this.angle = angle;
this.targetFound = false;
}
updateEyeCoords() {
this.x1 = this.size * cos(PI / 2 - this.fov / 2);
this.y1 = this.size * sin(PI / 2 - this.fov / 2);
this.x2 = this.size * cos(PI / 2 + this.fov / 2);
this.y2 = this.size * sin(PI / 2 + this.fov / 2);
}
draw(robotPos, robotAngle) {
this.targetFound ? fill(255) : fill(0);
push();
translate(robotPos.x, robotPos.y);
rotate(PI + this.angle + robotAngle);
triangle(0, 0, this.x1, this.y1, this.x2, this.y2);
pop()
}
updateVision(robotPos, robotAngle, targetPos) {
let absAngleToTarget = atan2(targetPos.y - robotPos.y, targetPos.x - robotPos.x) + PI;
let absDirection = ((this.angle + robotAngle + PI / 2) % TWO_PI + TWO_PI) % TWO_PI;
let angleDifference = min(absDirection - absAngleToTarget,);
let normalizedAngleDifference = (abs(angleDifference) % TWO_PI + TWO_PI) % TWO_PI;
this.targetFound = (normalizedAngleDifference < this.fov / 2) || (TWO_PI - normalizedAngleDifference < this.fov / 2);
}
}
const ROBOT_LENGTH = 40;
const EYE_FOV = 45;
const ROBOT_SIZE = 10;
const ARM_SIZE = 6;
const DELTA_ANGLE = 0.15;
class Robot extends Creature {
initBody(pos) {
this.angle = random(0, 0);
this.length = ROBOT_LENGTH;
this.eye = new Eye(EYE_FOV, pos, -PI/2);
// this.eye = new Eye(EYE_FOV, pos, 0);
this.pos = pos;
this.startPos = pos;
// this.armPos = createVector(this.size * cos(this.angle), (this.size) * sin(this.angle));
this.robotState = false;
this.armState = false;
this.robotSize = ROBOT_SIZE
this.armSize = ARM_SIZE
}
copy() {
return new Robot(this.startPos, this.brain, this.generation + 1);
}
clone() {
let clonedRobot = new Robot(this.startPos, this.brain, this.generation);
clonedRobot.score = this.score;
return clonedRobot;
}
show() {
push()
translate(this.pos.x, this.pos.y)
this.robotState ? fill(255) : fill(0);
circle(0, 0, this.robotSize);
push()
rotate(this.angle)
stroke(colors[this.brain.hidden_nodes - 1]);
line(0, 0, this.length, 0);
push()
translate(this.length, 0)
this.armState ? fill(255) : fill(0);
circle(0, 0, this.armSize);
pop()
pop()
this.eye.draw(createVector(0, 0), this.angle);
pop()
}
think() {
// Now create the inputs to the neural network
let inputs = [];
let cmds = [false, false, false, false];
inputs[0] = +(this.eye.targetFound)
inputs[1] = +this.robotState;
inputs[2] = +this.armState;
// Get the outputs from the network
let action = this.brain.predict(inputs);
if (action[0] > 0.5) {
cmds[0] = true;
}
if (action[1] > 0.5) {
cmds[1] = true;
}
if (action[2] > 0.5) {
cmds[2] = true;
}
if (action[3] > 0.5) {
cmds[3] = true;
}
return cmds;
}
move(cmds, targetPos) {
if (cmds[0]) {
this.armState = !this.armState;
}
if (cmds[1]) {
this.robotState = !this.robotState;
}
if (cmds[2]) {
if ((this.robotState && !this.armState)) {
this.angle += DELTA_ANGLE;
}
if (!this.robotState && this.armState) {
let armPos = p5.Vector.add(this.pos, createVector(this.length * cos(this.angle), (this.length) * sin(this.angle)));
this.angle += DELTA_ANGLE;
this.pos = p5.Vector.add(armPos, createVector(this.length * cos(this.angle + PI), (this.length) * sin(this.angle + PI)));
}
}
if (cmds[3]) {
if (this.robotState && !this.armState) {
this.angle -= DELTA_ANGLE;
}
if (!this.robotState && this.armState) {
let armPos = p5.Vector.add(this.pos, createVector(this.length * cos(this.angle), (this.length) * sin(this.angle)));
this.angle -= DELTA_ANGLE;
this.pos = p5.Vector.add(armPos, createVector(this.length * cos(this.angle + PI), (this.length) * sin(this.angle + PI)));
}
}
this.eye.updateVision(this.pos, this.angle, targetPos);
}
}