-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathblackjack.py
104 lines (84 loc) · 3.56 KB
/
blackjack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import logging
from collections import defaultdict
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from envs.BlackjackEnv import Blackjack, ACE_VALUE
from log import make_logger
NO_ACE_LAYER = 0
ACE_LAYER = 1
N_USABLE_ACE_LAYERS = 2
DEALER_MIN = 1 # ACE is 1 or 10
DEALER_MAX = 10 # Max in one card
N_DEALER_CARD_SUM_POSSIBILITIES = DEALER_MAX - DEALER_MIN + 1
PLAYER_INIT_STICK_SUM = 20
PLAYER_MIN = 12 # Below 12 always hit
PLAYER_MAX = 21 # Blackjack :)
N_PLAYER_CARDS_SUM_POSSIBILITIES = PLAYER_MAX - PLAYER_MIN + 1
class State:
def __init__(self, dealer_sum, player_sum, player_has_usable_ace):
self.dealer_sum = dealer_sum
self.player_sum = player_sum
self.player_has_usable_ace = player_has_usable_ace
def get_policy_player_sum(self):
return self.player_sum - PLAYER_MIN
def get_policy_dealer_sum(self):
if self.dealer_sum == ACE_VALUE:
return 0
else:
return self.dealer_sum - DEALER_MIN
def get_policy_has_usable_ace(self):
return ACE_LAYER if self.player_has_usable_ace else NO_ACE_LAYER
def __str__(self):
return 'State(dealer_sum={:2} player_sum({})={:2})'.format(
self.dealer_sum,
'has ace' if self.player_has_usable_ace else 'no ace',
self.player_sum)
def __repr__(self):
return self.__str__()
def to_policy_key(self):
ace_layer = ACE_LAYER if self.player_has_usable_ace else NO_ACE_LAYER
return self.get_policy_dealer_sum(), self.get_policy_player_sum(), ace_layer
def generate_episode(env: Blackjack, player_policy, ep_no):
history = []
done = False
observation = env.reset()
while not done:
state = State(*observation)
history.append(state)
log.debug('Episode no {}: {}'.format(ep_no, state))
observation, reward, done, auxiliary = env.step(player_policy[state.to_policy_key()])
return history, reward
if __name__ == '__main__':
log = make_logger(__name__, logging.DEBUG)
env = Blackjack()
state_value = np.zeros((N_DEALER_CARD_SUM_POSSIBILITIES, N_PLAYER_CARDS_SUM_POSSIBILITIES, N_USABLE_ACE_LAYERS))
player_policy = np.ones(state_value.shape, dtype=np.int32)
player_policy[:, (PLAYER_INIT_STICK_SUM - PLAYER_MIN):, :] = 0
returns = defaultdict(list)
for i in range(100000):
episode, reward = generate_episode(env, player_policy, i)
log.info('Episode no {} rewarded {:2}: {}'.format(i, reward, episode))
for state in episode:
key = state.to_policy_key()
returns[key].append(reward)
state_value[key] = np.mean(returns[key])
X, Y = np.meshgrid(np.arange(0, state_value.shape[0]) + DEALER_MIN, np.arange(0, state_value.shape[1]) + PLAYER_MIN)
fig = plt.figure()
ax = fig.add_subplot(121, projection='3d')
ax.set_title('No usable ace')
ax.set_xlabel('dealer sum')
ax.set_ylabel('player sum')
ax.set_xticks(np.arange(0, state_value.shape[0]) + DEALER_MIN)
ax.set_yticks(np.arange(0, state_value.shape[1]) + PLAYER_MIN)
surf = ax.plot_surface(X, Y, state_value[:, :, NO_ACE_LAYER].T, cmap='jet')
fig.colorbar(surf)
ax = fig.add_subplot(122, projection='3d')
ax.set_title('Usable ace')
ax.set_xlabel('dealer sum')
ax.set_ylabel('player sum')
ax.set_xticks(np.arange(0, state_value.shape[0]) + DEALER_MIN)
ax.set_yticks(np.arange(0, state_value.shape[1]) + PLAYER_MIN)
surf = ax.plot_surface(X, Y, state_value[:, :, ACE_LAYER].T, cmap='jet')
fig.colorbar(surf)
plt.show()