forked from maurimo/kanimaji
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbezier_cubic.py
81 lines (63 loc) · 2 KB
/
bezier_cubic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import math
Infinity = float("inf")
def thrt(x):
return math.pow(x, 1.0/3) if x>0 else -math.pow(-x, 1.0/3)
def sqrt(x):
return math.sqrt(x) if x>0 else 0
def sq(x):
return x*x
def cb(x):
return x*x*x
# x(t) = t^3 T + 3t^2(1-t) U + 3t(1-t)^2 V + (1-t)^3 W
def time(pt1, ct1, ct2, pt2, x):
#var C = Cubic, a,b,c,d,p,q,lambda,sqlambda,tmp,addcoef,t,qb,qc,norm,angle,fact;
a = pt1.x - 3*ct1.x + 3*ct2.x - pt2.x
b = 3*ct1.x - 6*ct2.x + 3*pt2.x
c = 3*ct2.x - 3*pt2.x
d = pt2.x - x
if(abs(a) < 0.000000001): #quadratic
if(abs(b) < 0.000000001): #linear
return -d/c
qb = c/b
qc = d/b
tmp = sqrt(sq(qb)-4*qc)
return (-qb +(tmp if (qb>0 or qc<0) else -tmp)) / 2
p = -sq(b)/(3*sq(a)) + c/a
q = 2*cb(b/(3*a)) - b*c/(3*sq(a)) + d/a
addcoef = -b/(3*a)
lmbd = sq(q)/4 + cb(p)/27
if(lmbd >= 0): #real
sqlambda = sqrt(lmbd)
tmp = thrt(-q/2 + (sqlambda if q<0 else -sqlambda))
return tmp - p/(3*tmp) + addcoef
else:
norm = sqrt(sq(q)/4 - lmbd)
if(norm < 0.0000000001):
return addcoef
angle = math.acos(-q/(2*norm)) / 3
fact = 2 * thrt(norm)
t = Infinity
for i in range(-1, 2):
tmp = fact * math.cos(angle + i*math.pi*2/3) + addcoef
if(tmp>=-0.000000001 and tmp < t):
t = tmp
return t;
def value(pt1, ct1, ct2, pt2, x):
t = time(pt1, ct1, ct2, pt2, x);
return cb(t)*pt1.y + 3*sq(t)*(1-t)*ct1.y + 3*t*sq(1-t)*ct2.y + cb(1-t)*pt2.y
class pt:
def __init__(self, x, y):
self.x, self.y = x, y
def __repr__(self):
return "(%f,%f)" % (self.x, self.y)
if __name__ == "__main__":
pt1 = pt(0,0)
ct1 = pt(0.25, 0.1)
ct2 = pt(0.25, 1.0)
pt2 = pt(1,1)
part = 100
with open('ease.txt', 'w') as f:
for i in range(0,part+1,1):
x = float(i) / part
y = value(pt1, ct1, ct2, pt2, x)
f.write("%f %f\n" % (x,y))