forked from lynxis/keyblepy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencrypt.py
174 lines (143 loc) · 5.61 KB
/
encrypt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python3
# based on keyble - a coffe script implementation of the keyble
# License ISC
#
# a close 1:1 copy from the `keyble` code (coffe script code - isc)
# TODO: check if we can use AES/ECB with PKCS7 padding.
# TODO: do we have to support the 'other' encryption methods? In theory there might be other encryption than this one
import math
from struct import pack, unpack
from Crypto.Cipher import AES
def _aes_encrypt(key, data):
""" encrypt data with key using aes 128 ecb """
mode = AES.MODE_ECB
encryptor = AES.new(bytes(key), mode)
return bytearray(encryptor.encrypt(bytes(data)))
def _pad_array(data, step, minimum):
_data = bytearray(data)
length = _padding_length(len(_data), step, minimum)
if len(_data) != length:
_data.extend(bytearray(length - (len(_data))))
return _data
def _padding_length(length, step, minimum):
# Returns the smallest value equal or larger than <value> that equals (<minimum> + (x * <step>)) for a natural number x
return math.ceil((length - minimum) / step) * step + minimum
def compute_nonce(message_type_id, session_open_nonce, security_counter):
nonce = pack('>BQBBH', message_type_id, session_open_nonce, 0, 0, security_counter)
return nonce
def xor_array(data, xor_data, xor_data_offset=0):
""" XOR @data with the @xor_data """
xorred = bytearray()
for i in range(len(data)):
xorred.append(data[i] ^ xor_data[(xor_data_offset + i) % len(xor_data)])
return xorred
def crypt_data(message_data, message_type_id, session_open_nonce, security_counter, key):
""" message_data does not contain the message_type_id """
nonce = compute_nonce(message_type_id, session_open_nonce, security_counter)
xor_data = bytearray()
# do 16 byte at once
for index in range(_padding_length(len(message_data), 16, 0) // 16):
tmp = bytearray()
tmp.append(0x01)
tmp.extend(nonce)
tmp.extend(pack('>H', index + 1))
tmp = _pad_array(tmp, 16, 0)
xor_data.extend(_aes_encrypt(key, tmp))
return xor_array(message_data, xor_data)
def compute_authentication_value(message_data, message_type_id, session_nonce, security_counter, user_key):
""" an auth is 4 byte long """
nonce = compute_nonce(message_type_id, session_nonce, security_counter)
length = len(message_data)
padded_length = _padding_length(length, 16, 0)
padded_data = _pad_array(message_data, 16, 0)
tmp = bytearray()
tmp.append(0x09)
tmp.extend(nonce)
tmp.extend(pack('>H', length))
encrypted_xor_data = _aes_encrypt(user_key, tmp)
for i in range(0, padded_length, 16):
encrypted_xor_data = _aes_encrypt(user_key, xor_array(encrypted_xor_data, padded_data, i))
# xor array
tmp = bytearray()
tmp.append(0x01)
tmp.extend(nonce)
tmp.append(0x00)
tmp.append(0x00)
tmp.extend(pack('>H', padded_length))
tmp = _pad_array(tmp, 16, 0)
return xor_array(
encrypted_xor_data[0:4],
_aes_encrypt(user_key, tmp)
)
def encrypt_message(message, remote_nonce, local_security_counter, user_key):
encoded = message.encode()
body = encoded[1:]
msg_type_id = encoded[0]
padded_body = _pad_array(body, 15, 8)
_crypt_data = crypt_data(padded_body, msg_type_id, remote_nonce, local_security_counter, user_key)
auth = compute_authentication_value(padded_body, msg_type_id, remote_nonce, local_security_counter, user_key)
tmp = bytearray()
tmp.append(msg_type_id)
tmp.extend(_crypt_data)
tmp.extend(pack('>H', local_security_counter))
tmp.extend(auth)
return tmp
def test_pad_array():
pad = bytearray(8)
pad = _pad_array(pad, 15, 8)
assert(len(pad) == 8)
pad = bytearray(0)
pad = _pad_array(pad, 15, 8)
assert(len(pad) == 8)
pad = bytearray(15)
pad = _pad_array(pad, 15, 8)
assert(len(pad) == (15 + 8))
pad = bytearray(2 * 15 + 8 - 1)
pad = _pad_array(pad, 15, 8)
assert(len(pad) == (2 * 15 + 8))
def test_xor_data():
data = b'\x01\x02\x03\x04'
xor = b'\x00\x00\x00\x00'
xorred = xor_array(data, xor, 0)
assert(xorred == data)
data = b'\x01\x02\x03\x04'
xor = b'\x00\x02\x00\x00'
xorred = xor_array(data, xor, 0)
expect = b'\x01\x00\x03\x04'
assert(xorred == expect)
data = b'\x01\x02\x03\x04'
xor = b'\x00\x01\x00\x00'
xorred = xor_array(data, xor, 1)
expect = b'\x00\x02\x03\x04'
assert(xorred == expect)
data = b'\x01\x02\x03\x04'
xor = b'\x00\x00\x00\x00\x01\x02\x03\x04'
xorred = xor_array(data, xor, 0)
assert(xorred == data)
def test_crypt_data():
data = b'\x01\x02\x03\x04'
key = b'\x00' * 16
msg_type_id = 1
remote_nonce = 0
local_security_counter = 1
_crypt_data = crypt_data(data, msg_type_id, remote_nonce, local_security_counter, key)
assert(len(_crypt_data) == len(data))
def test_compute_auth():
# nodejs test data
# > r.utils.compute_authentication_value([1,2,3], 23, [1,2,3,4,5,6,7,8], 1, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16])
# [ 219, 223, 137, 233 ]
nonce, = unpack('>Q', bytearray([1,2,3,4,5,6,7,8]))
ret = compute_authentication_value(
bytearray([1,2,3]),
23,
nonce,
1,
bytearray([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]))
assert ret == bytearray([ 219, 223, 137, 233 ])
def test_compute_nonce():
# nodejs test data
# > r.utils.compute_nonce(23, [1,2,3,4,5,6,7,8], 42)
# [ 23, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 42 ]
nonce, = unpack('>Q', bytearray([1,2,3,4,5,6,7,8]))
ret = compute_nonce(23, nonce, 42)
assert ret == bytearray([23, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 42])