-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
331 lines (261 loc) · 11.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import sys, os, math
import argparse
import numpy as np
#from utils import saveCheckpoint
from torch.autograd import Variable
from sklearn import metrics
from tqdm import tqdm
from sklearn.metrics import average_precision_score
def compute_mAP(labels,outputs):
y_true = labels.cpu().numpy()
y_pred = outputs.cpu().numpy()
AP = []
for i in range(y_true.shape[0]):
AP.append(average_precision_score(y_true[i].reshape((-1)),y_pred[i].reshape((-1))))
return np.mean(AP)
def cycle(s_loader):
while True:
for item in s_loader:
yield item
def train(epoch, model, g_model, d_model, optimizer, g_optimizer,
d_optimizer, t_trainloader, s_trainloader, lmd_s, device):
#print('Current lr:{}'.format(lr_sch.get_lr()))
print_f = 1
mAP = []
lmd_s = 0.001# * (int(epoch//75) + 1 ) #0.15 if epoch < 52 else 0.0#min(int(epoch/5)*0.1,0.9)
lmd_fc = 1
Tensor = torch.cuda.FloatTensor if device == "cuda:0" else torch.FloatTensor
#input(model.state_dict())
#Define losses
criterion = nn.BCEWithLogitsLoss(reduction='none').to(device)
#criterion = nn.MultiLabelSoftMarginLoss()
d_criteria = nn.BCEWithLogitsLoss()
adversarial_loss = nn.BCEWithLogitsLoss().to(device)#reduction='none')
model.train()
g_model.train()
d_model.train()
# load M classifier weight in G classifier
try:
#pass
g_model.state_dict()['classifier.fc8.weight'].data = model.state_dict()['classifier.fc8.weight'].data
g_model.state_dict()['classifier.fc8.bias'].data = model.state_dict()['classifier.fc8.bias'].data
except:
#pass
g_model.state_dict()['module.classifier.fc8.weight'].data = model.state_dict()['module.classifier.fc8.weight'].data
g_model.state_dict()['module.classifier.fc8.bias'].data = model.state_dict()['module.classifier.fc8.bias'].data
'''if epoch%5 == 0:
g_model.train()
d_model.eval()
else:
g_model.eval()
d_model.train()'''
# initialize variables
t_total = 0
t_correct = 0.0
s_total = 0.0
s_correct = 0.0
running_loss = 0.0
running_d_loss = 0.0
running_g_loss = 0.0
# make info displayer
tqdm_loader = tqdm(range(len(t_trainloader)),ncols=150)
# create iterative dataloader to use next() on source data
s_trainloader_ = iter(s_trainloader)
for data in t_trainloader:
model.train()
# get the target data
t_inputs, t_labels = data
t_inputs = t_inputs.to(device)
t_labels = t_labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward target through M
with torch.no_grad():
feats = model(t_inputs)#,out_feat_keys)
t_feat, t_outputs = feats
_, t_preds = t_outputs.max(1)
# compute loss
#loss = criterion(t_outputs, t_labels)
# get the source batch
try:
s_inputs, _ = next(s_trainloader_)
s_inputs = s_inputs.to(device)
except:
#s_trainloader = torch.utils.data.DataLoader(s_trainset, batch_size=24,
# shuffle=True, num_workers=4)
s_trainloader_ = iter(s_trainloader)
s_inputs, _ = next(s_trainloader_)
s_inputs = s_inputs.to(device)
g_model.train()
# forward source through G
g_feats = g_model(s_inputs)#,out_feat_keys)
sp_feat, s_labels = g_feats
_, sp_pseudo = s_labels.max(1)
# Adversarial Training
valid = Variable(Tensor(t_feat.size(0), 1).fill_(0.9), requires_grad=False).to(device)
fake = Variable(Tensor(sp_feat.size(0), 1).fill_(0.1), requires_grad=False).to(device)
# -----------------
# Train Generator
# -----------------
#model.eval()
#d_model.eval()
# g_model.train()
# zero the parameter gradients
g_optimizer.zero_grad()
# compute generator loss
valid = Variable(Tensor(sp_feat.size(0), 1).fill_(0.9), requires_grad=False).to(device)
g_loss = lmd_fc*adversarial_loss(d_model(sp_feat), valid)#.clamp(1e-8,1-1e-7)
#g_loss += lmd_conv*adversarial_loss(d_conv_model(sp_conv), valid)
#g_loss /= 2.0
# backward pass for M
g_loss.backward()
#torch.nn.utils.clip_grad_norm_(g_model.parameters(), 10)
g_optimizer.step()
running_g_loss += g_loss.item()
# ----------------- #
if np.random.rand() < 0.01:
#print('in')
valid = Variable(Tensor(t_feat.size(0), 1).fill_(0.1), requires_grad=False).to(device)
fake = Variable(Tensor(sp_feat.size(0), 1).fill_(0.9), requires_grad=False).to(device)
else:
valid = Variable(Tensor(t_feat.size(0), 1).fill_(0.9), requires_grad=False).to(device)
fake = Variable(Tensor(sp_feat.size(0), 1).fill_(0.1), requires_grad=False).to(device)
# ---------------------
# Train Discriminator
# ---------------------
#model.eval()
#d_model.train()
#g_model.eval()
# zero the parameter gradients
d_optimizer.zero_grad()
# compute discriminator loss
real_loss = adversarial_loss(d_model(t_feat.detach()), valid)
#import pdb; pdb.set_trace()
fake_loss = adversarial_loss(d_model(sp_feat[np.random.choice(sp_feat.size(0), t_feat.size(0)),:].detach()), fake[:t_feat.size(0)])
d_loss = (real_loss + fake_loss) / 2.0
# backward pass for D
d_loss.backward()
#torch.nn.utils.clip_grad_norm_(d_model.parameters(), 10)
d_optimizer.step()
running_d_loss += d_loss.item()
# ----------------- #
# ---------------------
# Train Model
# ---------------------
#model.train()
#d_model.eval()
#g_model.eval()
with torch.no_grad():
g_feats = g_model(s_inputs)#,out_feat_keys)
sp_feat, s_labels = g_feats
_, sp_pseudo = s_labels.max(1)
# zero the parameter gradients
optimizer.zero_grad()
# forward target through M
feats = model(t_inputs)#,out_feat_keys)
t_feat, t_outputs = feats
_, t_preds = t_outputs.max(1)
# forward source through M
feats = model(s_inputs)#,out_feat_keys)
s_feat, s_outputs = feats
_, s_preds = s_outputs.max(1)
# compute loss
#loss = lmd_s * adversarial_loss(d_conv_model(t_conv), valid)
#t_outputs = nn.LogSigmoid()(t_outputs)
t_labels = t_labels.float().cuda()
mask = (t_labels == 255)
loss = torch.sum(criterion(t_outputs, t_labels).masked_fill_(mask, 0)) / t_labels.size(0)
try:
mAP.append(compute_mAP(t_labels.data,t_outputs.data))
except:
#print(t_labels)
#input('t_labels : NaN value Occurred')
#print(t_outputs)
#input('t_outputs : NaN value Occurred')
tqdm_loader.close()
print('Training diverged (model). Resetting the weights to previous stable state.')
return False
#s_outputs = nn.LogSigmoid()(s_outputs)
s_labels = s_labels.float().cuda()
#mask = (s_labels == 255)
#loss_s = lmd_s * torch.sum(criterion(s_outputs, s_labels.detach()).masked_fill_(mask, 0)) / s_labels.size(0)
loss_s = lmd_s * torch.sum(criterion(s_outputs, nn.Softmax()(s_labels).detach())) / s_labels.size(0)
'''if loss_s < 0.0:
loss_s = 0.0'''
loss += loss_s
#loss = criterion(t_outputs, t_labels)
#loss += lmd_s * criterion(s_outputs, s_labels.detach())
'''if loss < 0.001:
tqdm_loader.close()
print('Training diverged (loss). Resetting the weights to previous stable state.')
return False'''
# backward pass for M
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 10)
optimizer.step()
# statistics
running_loss += loss.item()
#t_correct += t_preds.eq(t_labels).sum().item()
t_total += t_labels.size(0)
# set display info
tqdm_loader.set_description('\r[Training] [Ep %3d] loss: %.3f (%.3f) d_loss: %.5f g_loss: %.5f mAP: %.5f'%
(epoch + 1, running_loss / t_total,loss_s, running_d_loss / t_total,
running_g_loss / t_total,100*np.mean(mAP[-20:]))
)
tqdm_loader.update(print_f)
# close loader to avoid irregularity in display
tqdm_loader.close()
# update lr scheduler
#lr_sch.step()
return True
def test(epoch,model, g_model, d_model, optimizer, g_optimizer,
d_optimizer,t_testloader,best_mAP,best_path,device):
mAP = []
model.eval()
tqdm_test = tqdm(range(len(t_testloader)),ncols=150)
tqdm_test.refresh()
with torch.no_grad():
for (images, labels) in t_testloader:
images = images.view((-1,3,227,227))
#images = Variable(images, volatile=True)
if device is not None:
images = images.cuda()
# Forward + Backward + Optimize
_,outputs = model(images)
outputs = outputs.float()
outputs = outputs.cpu().data
outputs = outputs.view((-1,10,21))
outputs = outputs.mean(dim=1).view((-1,21))
#score = tnt.meter.mAPMeter(outputs, labels)
mAP.append(compute_mAP(labels,outputs))
tqdm_test.set_description('val mAP: %.3f %% |' % (100*np.mean(mAP[-20:])))
tqdm_test.update(1)
# close loader to avoid irregularity in display
tqdm_test.close()
epoch_mAP = np.mean(mAP[-20:])
best_mAP = saveCheckpoint(epoch, model, g_model, d_model, optimizer, g_optimizer,
d_optimizer,epoch_mAP,best_mAP,best_path)
model.train()
return best_mAP
def saveCheckpoint(epoch,model, g_model, d_model, optimizer, g_optimizer,
d_optimizer, epoch_acc,best_acc,best_path):
if epoch_acc > best_acc:
print('Saving Best model...\tTop1: %.2f%%' %(100.*epoch_acc))
if not os.path.isdir('./checkpoint'):
os.mkdir('./checkpoint')
if os.path.exists(best_path.format(best_acc)):
os.remove(best_path.format(best_acc))
state = {'epoch': epoch,'model': model.state_dict(), 'optimizer': optimizer.state_dict(),
'g_model': g_model.state_dict(), 'g_optimizer': g_optimizer.state_dict(),
'd_model': d_model.state_dict(), 'd_optimizer': d_optimizer.state_dict()}
torch.save(state,best_path.format(epoch_acc))
best_acc = epoch_acc
else:
print('Best Model \tTop1: %.2f%%' %(100.*best_acc))
return best_acc