Skip to content

ai4ce/LoQI-VPR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LoQI-VPR

VPR for Low Quality Images via Knowledge Distillation

Implementation for the IROS 2025 submission "Distillation Improves Visual Place Recognition for Low Quality Images".

Setup

  1. Clone the repository with submodules: $ git clone --recurse-submodules https://github.com/ai4ce/LoQI-VPR.git
  2. Install dependencies: $ conda env create -f environment.yml
  3. Download GSV-Cities dataset from Kaggle and the Pitts250k dataset for validation
  4. Download VPR testing datasets using VPR Datasets Downloader

Running Experiments

trainer.yaml and test_trained_model.yaml from configs contains the configurations for running distillation and testing VPR methods respectively.

Training: src/trainer_gsv-cities.py distills VPR models enabled in configurations using the enabled loss functions.

Testing: src/dataset/testing_data.py precomputes global descriptors for the specified VPR models and datasets selected in configurations. src/calculate_recall.py records recall rates to tensorboard log files and a Google Sheet.

About

For more information, please visit the project website

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages