forked from bionicvisionlab/2021-han-scene-simplification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp2p_stimulus.py
35 lines (30 loc) · 1.46 KB
/
p2p_stimulus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
import pulse2percept as p2p
input_video = "depth/sample.mp4"
output_folder = "p2p-samples/"
for RHO in [100, 300, 500]:
for LAM in [0, 100, 200]:
if LAM == 0:
model = p2p.models.ScoreboardModel(xrange=(-10, 10), yrange=(-10, 10), rho=RHO)
else:
model = p2p.models.AxonMapModel(xrange=(-10, 10), yrange=(-10, 10), rho=RHO, axlambda=LAM)
model.build()
grid_sizes = [(8, 8), (16, 16), (32, 32)]
implants = {}
for gsize in grid_sizes:
# Fit all electrodes into (-2000, 2000):
spacing = 4000 / gsize[0]
# Sensible radius might be 1/5th of spacing:
radius = spacing / 5
egrid = p2p.implants.ElectrodeGrid(gsize, spacing,
etype=p2p.implants.DiskElectrode,
r=radius)
implants['%dx%d' % gsize] = p2p.implants.ProsthesisSystem(egrid)
current_video = p2p.stimuli.VideoStimulus(input_video, as_gray=True)
for gsize in grid_sizes:
res = gsize[0]
implant_key = str(res) + "x" + str(res)
implant = implants[implant_key]
implant.stim = current_video.resize(implant.earray.shape)
percept = model.predict_percept(implant)
percept.save(output_folder + "sample_{}({},{})".format(res, RHO, LAM) + ".mp4", fps=20) # You can control the frame rate with fps=