-
Notifications
You must be signed in to change notification settings - Fork 353
/
Copy pathsess_megatron.py
302 lines (231 loc) · 10.1 KB
/
sess_megatron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import sys
import os
import pathlib
import torch
import traceback
import numpy as np
from typing import List, Tuple
from megatron_mini import get_args
from megatron_mini.initialize import initialize_megatron
from megatron_mini.model import LLaMAModel
from megatron_mini.utils import get_model_for_infer, Tokenizer
def print_rank_0(message):
"""If distributed is initialized, print only on rank 0."""
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
print(message, flush=True, file=sys.stderr)
else:
print(message, flush=True, file=sys.stderr)
def add_code_generation_args(parser):
"""Code generation arguments."""
group = parser.add_argument_group(title="code generation")
group.add_argument(
"--padded_vocab_size",
type=int,
default=40000,
help="Start id for whitespace encoding",
)
group.add_argument("--model_dir", type=str, default="")
group.add_argument("--model_name", type=str, default="aix3-7b-base")
return parser
class Predictor(object):
def __init__(self, args):
self.args = args
self.checkpoint_head_hash: str = ""
self.np_rand = np.random.RandomState(seed=1414)
# build predictor
self.tokenizer = self.create_tokenizer()
self.dtype = torch.float32
if self.args.bf16:
self.dtype = torch.bfloat16
elif self.args.fp16:
self.dtype = torch.half
self.predictor = self.create_predictor()
if torch.distributed.is_initialized():
torch.distributed.barrier()
@staticmethod
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
print_rank_0("Building Codemodel ...")
model = LLaMAModel(parallel_output=False)
return model
@staticmethod
def pad_batch(tokens_id, max_seq_len=2048):
"""
pad_batch was used by syncing token_ids
"""
tokens_id = np.reshape(tokens_id, [1, -1])
context_length = tokens_id.shape[-1]
assert context_length <= max_seq_len, f"{context_length}, {max_seq_len}"
if context_length < max_seq_len:
tokens_id = np.concatenate([tokens_id, np.zeros(shape=[1, max_seq_len-context_length], dtype=tokens_id.dtype)], axis=-1)
return tokens_id.astype(np.int64), np.array([context_length], dtype=np.int64)
@staticmethod
def sync_type_info(sess_id: int) -> int:
input_info = np.array([sess_id], dtype=np.int64)
input_info_tensor = torch.tensor(input_info, dtype=torch.int64, device='cuda')
torch.distributed.broadcast(
input_info_tensor,
0,
)
sess_id = input_info_tensor[0].item()
return sess_id
@staticmethod
def sync_obj_info(model_dir: str) -> str:
tmp_list = [model_dir]
torch.distributed.broadcast_object_list(
tmp_list,
0,
)
return tmp_list[0]
def create_predictor(self):
model_dir = self.args.model_dir
assert self.args.num_attention_heads % self.args.tensor_model_parallel_size == 0
assert self.args.hidden_size % self.args.num_attention_heads == 0
model = get_model_for_infer(self.model_provider)
print_rank_0("Loading state dict ...")
_ = self.load_checkpoint(model, model_dir)
assert len(model) == 1, "Above condition should have caught this"
model = model[0]
model.eval()
if self.args.bf16 or self.args.fp16 :
print_rank_0(f" > converting model to {'bf16' if self.args.bf16 else 'fp16'} ...")
model.to(self.dtype)
print_rank_0(f" > moving model to GPU ...")
model.cuda(torch.cuda.current_device())
return model
def create_tokenizer(self):
assert os.path.exists(os.path.join(self.args.model_dir, "tokenizer.model"))
tokenizer = Tokenizer(model_path=os.path.join(self.args.model_dir, "tokenizer.model"))
return tokenizer
def load_checkpoint(self, model: List[LLaMAModel], path):
assert isinstance(model, list)
if not (path is not None and os.path.exists(path)):
raise ValueError
iteration = 0
if self.args.tensor_model_parallel_size == 1 and self.args.rank < self.args.tensor_model_parallel_size:
checkpoint_name = os.path.join(path, f"{self.args.model_name}.pt")
assert os.path.isfile(checkpoint_name)
elif self.args.rank < self.args.tensor_model_parallel_size:
checkpoints = sorted(pathlib.Path(path).glob(f"{self.args.model_name}_states_*.pt"))
assert len(checkpoints) == self.args.tensor_model_parallel_size
checkpoint_name = checkpoints[self.args.rank]
else:
raise ValueError
# Load the checkpoint.
print(f"rank_{self.args.rank} load: {checkpoint_name}", flush=True, file=sys.stderr)
state_dict = torch.load(checkpoint_name, map_location="cpu")
# Set iteration.
iteration = state_dict.get("iteration", 0)
if "model" in state_dict:
state_dict = state_dict["model"]
if "module" in state_dict:
state_dict = state_dict["module"]
# Model.
model[0].load_state_dict(state_dict, strict=True)
print_rank_0(
f"successfully loaded checkpoint from {path} "
f"at iteration {iteration}"
)
return iteration
def predict_batch(self, data):
common_len = int(data[1].item())
with torch.no_grad():
tokens_ids = data[0].clone().detach().cuda()
logits = self.predictor(
tokens=tokens_ids, # shape: [bsz, 1024]
start_pos=common_len,
)
logits = logits[:, -1].view(1, -1).contiguous()
probs = torch.softmax(logits, dim=-1).cpu().numpy()
return [np.squeeze(probs)]
def predict(self, token_ids: List[int], common_len: int) -> Tuple[List[int], List[float]]:
if torch.distributed.is_initialized():
torch.distributed.barrier()
try:
common_len_nda = np.array([common_len]).astype("int64")
token_ids_nda = np.array([token_ids], dtype=np.int64)
max_pad_len = max(token_ids_nda.shape[-1], 128)
max_pad_len = self.sync_type_info(max_pad_len)
token_ids_nda, tokens_id_len = self.pad_batch(token_ids_nda, max_seq_len=max_pad_len)
context_tensor = torch.tensor(token_ids_nda, dtype=torch.int64, device='cuda')
context_tensor_length = torch.tensor(tokens_id_len, dtype=torch.int64, device='cuda')
context_common_len = torch.tensor(common_len_nda, dtype=torch.int64, device='cuda')
torch.distributed.broadcast(
context_tensor,
0,
)
torch.distributed.broadcast(
context_tensor_length,
0,
)
torch.distributed.broadcast(
context_common_len,
0,
)
tokens_id_len = context_tensor_length.min().item()
batch = [context_tensor[:, :tokens_id_len], context_common_len]
out = self.predict_batch(batch)
# shape: [bsz, vocab_size] => [vocab_size]
out = out[0]
predict_id = np.argmax(out)
return [int(predict_id)], [out[predict_id]]
except Exception as e:
traceback.print_exc(file=sys.stderr)
raise RuntimeError(e)
class TestInference:
def __init__(self) -> None:
aix_config = {
"num_layers": 32, "hidden_size": 4096, "num_attention_heads": 32,
"max_position_embeddings": 32768, "fp16": False, "bf16": True,
"rope_theta": 256000, "inner_hidden_dim": 14464, "padded_vocab_size": 49152,
"seq_length": 4096, "micro_batch_size": 1, "use_flash_attn": True,
"use_cpu_initialization": True, "attention_head_type": "groupedquery"
}
initialize_megatron(
extra_args_provider=add_code_generation_args,
aix_config=aix_config
)
args = get_args()
self.sess = Predictor(args=args)
self.end_token_set = self.sess.tokenizer.end_token_set
def run_infer(self, code_string: str, max_new_tokens: int = 256, later_code: str = "", file_path: str = "") -> None:
tokens = self.sess.tokenizer.encode(
code_string=code_string, later_code=later_code, file_path=file_path
)
if len(tokens) == 0:
return self.sess.sync_obj_info("")
predict_list = []
common_len = 0
while True:
if torch.distributed.get_rank() == 0:
output_vals = self.sess.predict(
np.array([tokens], dtype='int32'),
np.array([common_len], dtype='int32')
)
predict_list.append(output_vals[0][0])
if len(predict_list) >= max_new_tokens or predict_list[-1] in self.end_token_set:
terminate_runs = 1
else:
terminate_runs = 0
common_len += len(tokens)
tokens = predict_list[-1:]
else:
tokens = [0] * 4
output_vals = self.sess.predict([], [], input_vals=[
np.array([tokens], dtype='int32'),
np.array([0], dtype='int32')
])
predict_list.append(0)
terminate_runs = 0
if self.sess.sync_type_info(terminate_runs) > 0:
break
return self.sess.sync_obj_info(self.sess.tokenizer.decode(predict_list))
if __name__ == "__main__":
infer = TestInference()
res = infer.run_infer(
code_string="""# 快速排序算法""",
later_code="\n",
file_path="test.py"
)
print(res)