-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_results.py
248 lines (202 loc) · 10.8 KB
/
visualize_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from _imports import *
os.system('cls')
remove_duplicates = ask_for_user_preference('Czy usunąć duplikaty projektów wygenerowanych przez algorytmy?')
verify_designs = ask_for_user_preference('Czy symulacyjnie zweryfikować własności najlepszych projektów?')
# procedury pomocnicze
def show_geometry_preview(settings_sim, pattern, scale_geometries = 3):
courant_number = settings_sim['basic']['courant_number']
basic_element_dimensions = settings_sim['diffuser_geometry']['basic_element_dimensions']
fs = settings_sim['basic']['fs']
T_air_C = settings_sim['propagation_medium']['T_air_C']
p_air_hPa = settings_sim['propagation_medium']['p_air_hPa']
RH = settings_sim['propagation_medium']['RH']
c, Z_air = get_air_properties(T_air_C, p_air_hPa, RH)
T = 1/fs # [s]
X = c*T/courant_number # [m]
num_element_height_levels = settings_sim['diffuser_geometry']['num_element_height_levels']
diffuser_depth = settings_sim['diffuser_geometry']['diffuser_depth']
shape_skyline = generate_2D_Skyline_diffuser(
pattern,
element_seg_depth=cont2disc(diffuser_depth*scale_geometries/num_element_height_levels,X),
element_size=cont2disc(basic_element_dimensions*scale_geometries,X))
show_shape(shape_skyline)
def verify_scattering_properties(settings_sim, pattern, reference_data):
mean_coeff = evaluate_design(settings_sim, pattern, reference_data)
print('średnia dyfuzja: ', mean_coeff)
# print (mean_coeff)
# draw_subband_polar_response(settings_sim, imp_res_object[0])
# plt.title('xy')
# draw_subband_polar_response(settings_sim, imp_res_object[1])
# plt.title('yz')
def remove_duplicate_designs(patterns, diffusions):
filtered_patterns = []
filtered_diffusions = []
def pattern_in_list(pattern, list):
list_of_comparisons = []
for element in list:
list_of_comparisons.append(np.array_equal(pattern,element))
return np.any(list_of_comparisons)
already_existing_patterns = []
for pattern, diffusion in zip(patterns, diffusions):
if not pattern_in_list(pattern, already_existing_patterns):
filtered_patterns.append(pattern)
already_existing_patterns.append(pattern)
filtered_diffusions.append(diffusion)
return filtered_patterns, filtered_diffusions
# konfiguracja procedur bazujących na AI
CONFIG_PATH_AI = '_settings/ai_default.ini'
CONFIG_PATH_SIM = '_settings/sim_default.ini'
settings_ai = read_config(CONFIG_PATH_AI)
settings_sim = read_config(CONFIG_PATH_SIM)
algenet_outcomes_dir = '../_joint_algenet_results'
file_save_dir = settings_sim['basic']['file_save_dir']
reference_file_path = os.path.join(file_save_dir,'reference.npy')
# odczyt danych referencyjnych do pomiaru dyfuzora
try:
print('obliczanie danych referencyjnych:')
reference_data = np.load(reference_file_path, allow_pickle=True).item()
except:
print(f'odczyt plik z danymi referencyjnymi ({reference_file_path}) nie powiódł się, rreferencja zostanie obliczona automatycznie')
imp_res_set_empty, imp_res_set_plate, _ = run_simulation_for_pattern(None,settings_sim, mode='reference_only')
reference_data = {
'plate':imp_res_set_plate,
'room':imp_res_set_empty,
'num_element_height_levels':settings_sim['diffuser_geometry']['num_element_height_levels'],
'diffuser_depth':settings_sim['diffuser_geometry']['diffuser_depth'],
'basic_element_dimensions':settings_sim['diffuser_geometry']['basic_element_dimensions'],
'fs':settings_sim['basic']['fs']}
# Zapis wyników obliczeń na dysk.
np.save(reference_file_path,reference_data)
# odczyt postępu algorytmu genetycznego
algenet_diffusions = []
algenet_patterns = []
algenet_gen_nums = []
if os.path.isdir(algenet_outcomes_dir):
for fname in os.listdir(algenet_outcomes_dir):
_, ext = os.path.splitext(fname)
if ext != '.npy': continue
fdata = np.load(os.path.join(algenet_outcomes_dir,fname), allow_pickle=True)
for item in fdata:
algenet_diffusions.append(item['diffusion'])
algenet_patterns.append(item['pattern'])
algenet_gen_nums.append(item['generation_number'])
best_dif_argmax = np.argmax(algenet_diffusions)
pattern = algenet_patterns[best_dif_argmax]
dif = algenet_diffusions[best_dif_argmax]
if remove_duplicates:
algenet_patterns, algenet_diffusions = remove_duplicate_designs(algenet_patterns, algenet_diffusions)
algenet_best_pattern_idx = np.argmax(algenet_diffusions)
# odczyt danych dla poszukiwania losowego
_, consolidated_data = obtain_replay_folder_contents(settings_ai)
random_diffusions = []
random_patterns = []
for entry in consolidated_data:
if 'input_pattern_generation' in list(entry.keys()):
if entry['input_pattern_generation'] != 'random':
continue
random_pattern = entry['replay_transitions'][0]['current_pattern']
random_diffusion = entry['episode_diffusions'][0] - entry['episode_rewards'][0]
random_diffusions.append(random_diffusion)
random_patterns.append(random_pattern)
if remove_duplicates:
random_patterns, random_diffusions = remove_duplicate_designs(random_patterns, random_diffusions)
random_diffusions = np.array(random_diffusions)
random_best_pattern_idx = np.argmax(random_diffusions)
# odczyt danych dla głębokiego gradientu strategii
agent_diffusions_rnd = []
agent_diffusions_bst = []
agent_patterns_rnd = []
agent_patterns_bst = []
for entry in consolidated_data:
episode_diffusions_argmax = np.argmax(entry['episode_diffusions'])
best_pattern = entry['replay_transitions'][episode_diffusions_argmax]['new_pattern']
if 'input_pattern_generation' in list(entry.keys()):
if entry['input_pattern_generation'] != 'random':
agent_diffusions_bst.append(np.max(entry['episode_diffusions']))
agent_patterns_bst.append(best_pattern)
continue
agent_diffusions_rnd.append(np.max(entry['episode_diffusions']))
agent_patterns_rnd.append(best_pattern)
if remove_duplicates:
agent_patterns_rnd, agent_diffusions_rnd = remove_duplicate_designs(agent_patterns_rnd, agent_diffusions_rnd)
agent_patterns_bst, agent_diffusions_bst = remove_duplicate_designs(agent_patterns_bst, agent_diffusions_bst)
dpg_best_pattern_bst_idx = np.argmax(agent_diffusions_bst)
dpg_best_pattern_rnd_idx = np.argmax(agent_diffusions_rnd)
print()
print(f'random - num designs: {len(random_diffusions)}')
print(f'genetic alg. - num designs: {len(algenet_diffusions)}')
print(f'deep policy gradient (random input) - num designs: {len(agent_diffusions_rnd)}')
print(f'deep policy gradient (best 10 input) - num designs: {len(agent_diffusions_bst)}')
print()
print()
print(f'best pattern random choice')
print(random_patterns[random_best_pattern_idx])
print(f'provided diffusion: {random_diffusions[random_best_pattern_idx]}')
if os.path.isdir(algenet_outcomes_dir):
print()
print(f'best pattern by genetic algorithm (generation no {algenet_gen_nums[algenet_best_pattern_idx]})')
print(algenet_patterns[algenet_best_pattern_idx])
print(f'provided diffusion: {algenet_diffusions[algenet_best_pattern_idx]}')
print()
print(f'best pattern by deep policy gradient (random input)')
print(agent_patterns_rnd[dpg_best_pattern_rnd_idx])
print(f'provided diffusion: {agent_diffusions_rnd[dpg_best_pattern_rnd_idx]}')
print()
print(f'best pattern by deep policy gradient (best 10 input)')
print(agent_patterns_bst[dpg_best_pattern_bst_idx])
print(f'provided diffusion: {agent_diffusions_bst[dpg_best_pattern_bst_idx]}')
print()
# Wykreślenie estymat gęstości prawdopodobieństwa
random_diffusions_df = pd.DataFrame()
random_diffusions_df = random_diffusions_df.assign(**{'mean diffusion coefficient':random_diffusions})
random_diffusions_df = random_diffusions_df.assign(**{'algorithm type':'random'})
agent_diffusions_rnd_df = pd.DataFrame()
agent_diffusions_rnd_df = agent_diffusions_rnd_df.assign(**{'mean diffusion coefficient':agent_diffusions_rnd})
agent_diffusions_rnd_df = agent_diffusions_rnd_df.assign(**{'algorithm type':'deep policy gradient (random input)'})
agent_diffusions_bst_df = pd.DataFrame()
agent_diffusions_bst_df = agent_diffusions_bst_df.assign(**{'mean diffusion coefficient':agent_diffusions_bst})
agent_diffusions_bst_df = agent_diffusions_bst_df.assign(**{'algorithm type':'deep policy gradient (best input)'})
algenet_diffusions_df = pd.DataFrame()
if os.path.isdir(algenet_outcomes_dir):
algenet_diffusions_df = algenet_diffusions_df.assign(**{'mean diffusion coefficient':algenet_diffusions})
algenet_diffusions_df = algenet_diffusions_df.assign(**{'algorithm type':'genetic algorithm'})
joint_df = pd.concat([random_diffusions_df,agent_diffusions_rnd_df,agent_diffusions_bst_df,algenet_diffusions_df])
print()
print('Mediany rozkładów:')
print(joint_df.groupby('algorithm type').median())
print()
print('Wynik autotestu różnic między dyfuzorami:')
input_df = joint_df.pivot(columns='algorithm type', values='mean diffusion coefficient')
print(input_df)
print(input_df.columns)
autotest(input_df)
print()
sns.histplot(data=joint_df, x='mean diffusion coefficient', hue='algorithm type', multiple="dodge", stat='probability',common_norm=False)
plt.xlabel('diffusion coefficient [-]', fontsize=13)
plt.ylabel('estimated probability [-]', fontsize=13)
plt.xlim([0,1])
plt.grid()
plt.gca().set_yscale('log')
plt.show()
if verify_designs:
# print("\n----------------------------------------------------------------------")
# print("weryfikacja własności dyfuzora wytworzonego przez próbkowanie losowe:")
best_pattern = random_patterns[random_best_pattern_idx]
verify_scattering_properties(settings_sim, best_pattern, reference_data)
show_geometry_preview(settings_sim, best_pattern)
# print("\n----------------------------------------------------------------------")
print("weryfikacja własności dyfuzora wytworzonego przez algorytm genetyczny:")
best_pattern = algenet_patterns[algenet_best_pattern_idx]
verify_scattering_properties(settings_sim, best_pattern, reference_data)
show_geometry_preview(settings_sim, best_pattern)
print("\n----------------------------------------------------------------------")
print("weryfikacja własności dyfuzora wytworzonego przez algorytm głębokiego gradientu strategii:")
best_pattern = agent_patterns_bst[dpg_best_pattern_bst_idx]
verify_scattering_properties(settings_sim, best_pattern, reference_data)
show_geometry_preview(settings_sim, best_pattern)
plt.show()