Status of Digitization Code
with Waveform Simulation

Sidney Leggett & Blair Jamieson

What our code does (1/2)

A module written in python

* Input truth hits data set (in an h5 file format)
1. For each true time generate number of pe’s following the PDF described by
the f_of g function
2. Builds a wavetrain of pulses following model of arXiv:1801.08690 using the
function buildwavetrain
* each pulse shape given by the function f_waveform, and

* the noise by the function f_noise

3. Process the wavetrains to find the times and charges using the function

WaveformsToTQ

* aninitial search for peaks is done to find the baseline, time and peak-height
of each pulse using the function get_ wf peak_ guesses

What our code does (2/2)

 -the output of that function is used to fit each peak to a gaussian in
the function get_times_charges from_wf

 which returns the 10% of the gaussian time and area of gaussian as
charge for each pulse

 After calling digitize_event, you can access the results of intermediate
steps from specific class members

Our digitization compared to WCSim

10

Our charge (arbitrary)

0.1 ns digitizer

0 2 4 6 8
WCSim charge (photo electrons)

10

104

103

10?

gl{]'jL

;lOD

1200

1150

1100

1050

1000

Our time 0.1 ns digitizer (ns)

950

90800

950

1000 1050 1100
WCSim time (ns)

1150

1200

10*

103

102

10!

:10°

Old slides next for context of project

Overview of project

* Visualizing the new tank geo_ mPMTshort
* Displaying events with truth information

* Methodology behind waveform sim for truth information

 Started following the Charge reconstruction in large-area photomultipliers
paper (here: grassi2018.pdf (infn.it)

* Waveform simulation
* Take waveforms and build digitization of true hits

* The Digitizer.py module
Digitizer Testing notebook

https://www.fe.infn.it/radioactivity/materials/papers/grassi2018.pdf

GetTruekvent and EventDisplay

* GetTrueEvent is a function that takes our loaded truth h5 dataset, and
a desired entry of the event you want

* |t then outputs the true pmts that is an np.array of the PMT numbers hit and
the true times of the times where the PMT was hit, then final the true parents
of the parent number of the photon hitting PMT (which is =-1 for the dark
noise)

* EventDisplay is a function that takes in an np.array of PMTs that were
hit (called tubes), then an np array of either times or charges

(quantities), a title for the display, and a cut range for the min and
max for values to be shown on plot

* Returns plot

Waveform Simulation

w 5) . Q
B qbod. (A)Hits 8 20F|-- (C) Signal 8201
* Following the Grassi paper g — 510*" 510 ...
* Figure 1 from the paper (to the right) © LL— ©
shows the building blocks of waveform Ot 0 .
simulation % 500 1000 0 500 1000 0 500 1000
| Time [ns] Time [ns] Time [ns]
A. Shows hit generation, where for each X @
detected photoelectrons a random | ¥
charge value is generated § (B) Template é (E) Waveform
B- ShOWS the analytical Shape of a Single pe E‘IE-— E‘Eﬂ_ ..
template 5 5
_ O 10 o
C. Result of the convolution between the 10
SPE template and the hits | -
D. PMT simulated noise 0
E. Final PMT waveform resulting from the ' A S RO S N R—

1
, . 0 500 1000 0 100 200 300 400 500 600 700 800_900 1000
sum of the signal and noise component Time [ns] Time [ns]

https://arxiv.org/pdf/1801.08690.pdf

Information on Figures

* Figure A is showing a sequence of
hits resulting from several pes
impinging on the same pmt that are
shown as instantaneous pulses

the analytical shape of a spe
waveform is show in figure B, this is
the shape we can call spe template

* The signal only waveform resulting
from the hits shown in A is built by
convolving each hit the the spe
template and shown in C

 To make simulation more realistic, a
noise waveform is added to the
waveform built using only signal hits
shown in D

* The ultimate waveform made up of
signal hits, and all noise components
is shown in E

11 \ 2
Upeas (1) = Up - exp (—5(“”'”“]J) (2.2)

fT[]

Table 2. Parameters involved in the signal (top rows) and noise (bottom rows) simulation of the pmT
waveform. Parameters for which the “Range” column is filled are generated randomly according to a flat
probability density function at the beginning of the simulation.

Parameter Value Range Description Function
Uy 20 ADC
ap 0.15 SPE template eq. 2.2
T 30 ns
Uy -1.2 ADC
Ty 55 ns Overshoot eq. 2.3
g -4 ns
!:j -Eﬁ(;:]:c Overshoot eq. 2.4
HUN 1.5 ADC Baseline Gaussian
N 1 ADC White Noise
”.FF 5 N(Components) Fixed
frE [1,480] MHz Frequency Frequency
Agg [0.1,0.3] ADC Amplitude
- 2
Uos (1) = Uy -exp(—l (I _ “]) (2.3)
21 o
r 1 (t)
Uosa(t) = Uy - "exp|-— (2.4)
S0ns—r T2

exp (W] + 1
Ulr) = Upcuk + Upsy + Ups2 (2.5)

Parameter Description Value

W h y d O it ? Jo sPE calibrated gain |l PE

Pedestal cutoff 0.3 pE

sPE Gauss width 0.3 PE
Under-amplified pE fraction 0.2
Exponential decay constant 0.5 PE

e Build a PMT waveform simulation with the
goal of developing and validating the charge
reconstruction algorithm with known input
signal

* The charge value g is generated randomly
according to the distribution f (q)

* The weight (omega) determines the relative
contribution of a gaussian dist’n with respect l-w)=exp| - S8 + Lexp-2 g2,
to an exponential tail, modelling the faction | 0 q9<ap
of under amplified pes

Creating the Digitizer.py module

* Provides a class for doing the digitization of events
* The class holds all the settings for the digitization

* Function digitize _event which takes np.arrays of the true PMTs and
true times (and there are multiple entries per PMT)

Digitizer.py

* The digitization follows these steps:

1. For each true time we generate the number of pe’s following the
probability density function F(q)

2. Build a wavetrain of pulses following the papers model using the function
buildwavetrain
1. Each pulse shape given by the function f_waveform
2. And the noise by the function f _noise

3. Process the wavetrains to find times and charges using the function
WaveformsToTQ

1. Initial search for peaks is done to find the baseline, time and peak height of each
pulse using the function get_wf peak guesses, the output of the function is used
to fit each peak to a gaussian in the function get_times_charges from_wf, which
returns the 10% of the gaussian time and area of gaussian as charge for each pulse

Digitizer.py

» After calling digitize_event you can access the result of the intermediate steps in the class
members

self
self
self
self
self
self

.pmt_time dict
.pmt_pe dict
.pmt_wf dict
.digi gt dict
firstguesses
.peakfits

pmt :
pmt :
pmt :
pmt :
pmt :
pmt :

list of truetimes of photon arrivals

list of number of pe for each photon arrival
(times, charges) wavetrain for each pmt
(digitized time, charge)

(baseline, peaktime, peakheight)

(params, covariance)

Testing

* Testing the new digitizer class with the truth data h5 file:
IWCD_mPMT_Short_emg_EOto1000MeV _truehits.h5

* Creating 3 classes to read initialize the h5 data

* First to initialize the digihits dataset

» Second to initialize the truth data, and use the digitization class with
parameters set to match the WCSim digitization, following 0.1 ns binning

* Third to initialize the truth data, and use the digitization class with parameters
set to match the IWCD 8 ns binning

Test the intermediate steps in digitization for
the 0.1 and 8 ns binning seperately

* Doing this by

Building waveforms
Finding peaks (first guess)
Fitting peaks

B w e

Calculating final charge

Building plots of our digitized event vs WCSIim

Plot 1: WCSim time vs Our min-time Plot 2: WCSim charge vs Our charge
1200 20.0
104 104
17.5
1150+ -
. 215.0
E 103 E 103
EJIIOO- E 125
= |-
S L
o 2
2 1050 102 %10 0 _10
- T el '
< g3 |
£ 1000/ 5 50 :10*
8 510 O [
9501 2I5 :100
10° 000 25 50 75 100 135 150 175 200

90830 950 1000 1050 1100 1150 1200 WCSim charge (photo electrons)
WCSim time (ns)

What we are working on now

 Parts of code run very slow, trying to optimize to speed up
* Finalize plotting of intermediate steps

