
Status of Digitization Code
with Waveform Simulation

Sidney Leggett & Blair Jamieson

What our code does (1/2)

A module written in python

• Input truth hits data set (in an h5 file format)
1. For each true time generate number of pe’s following the PDF described by

the f_of_q function
2. Builds a wavetrain of pulses following model of arXiv:1801.08690 using the

function buildwavetrain
• each pulse shape given by the function f_waveform, and
• the noise by the function f_noise
3. Process the wavetrains to find the times and charges using the function
WaveformsToTQ
• an initial search for peaks is done to find the baseline, time and peak-height

of each pulse using the function get_wf_peak_guesses

What our code does (2/2)

• -the output of that function is used to fit each peak to a gaussian in
the function get_times_charges_from_wf

• which returns the 10% of the gaussian time and area of gaussian as
charge for each pulse

• After calling digitize_event, you can access the results of intermediate
steps from specific class members

Our digitization compared to WCSim

Old slides next for context of project

Overview of project

• Visualizing the new tank geo_mPMTshort

• Displaying events with truth information

• Methodology behind waveform sim for truth information
• Started following the Charge reconstruction in large-area photomultipliers

paper (here: grassi2018.pdf (infn.it)

• Waveform simulation

• Take waveforms and build digitization of true hits

• The Digitizer.py module

Digitizer_Testing notebook

https://www.fe.infn.it/radioactivity/materials/papers/grassi2018.pdf

GetTrueEvent and EventDisplay

• GetTrueEvent is a function that takes our loaded truth h5 dataset, and
a desired entry of the event you want
• It then outputs the true pmts that is an np.array of the PMT numbers hit and

the true times of the times where the PMT was hit, then final the true parents
of the parent number of the photon hitting PMT (which is = -1 for the dark
noise)

• EventDisplay is a function that takes in an np.array of PMTs that were
hit (called tubes), then an np array of either times or charges
(quantities), a title for the display, and a cut range for the min and
max for values to be shown on plot
• Returns plot

Waveform Simulation

• Following the Grassi paper

• Figure 1 from the paper (to the right)
shows the building blocks of waveform
simulation

A. Shows hit generation, where for each
detected photoelectrons a random
charge value is generated

B. Shows the analytical shape of a single pe
template

C. Result of the convolution between the
SPE template and the hits

D. PMT simulated noise

E. Final PMT waveform resulting from the
sum of the signal and noise component

https://arxiv.org/pdf/1801.08690.pdf

Information on Figures
• Figure A is showing a sequence of

hits resulting from several pes
impinging on the same pmt that are
shown as instantaneous pulses

• the analytical shape of a spe
waveform is show in figure B, this is
the shape we can call spe template

• The signal only waveform resulting
from the hits shown in A is built by
convolving each hit the the spe
template and shown in C

• To make simulation more realistic, a
noise waveform is added to the
waveform built using only signal hits
shown in D

• The ultimate waveform made up of
signal hits, and all noise components
is shown in E

Why do it?

• Build a PMT waveform simulation with the
goal of developing and validating the charge
reconstruction algorithm with known input
signal

• The charge value q is generated randomly
according to the distribution f (q)

• The weight (omega) determines the relative
contribution of a gaussian dist’n with respect
to an exponential tail, modelling the faction
of under amplified pes

Creating the Digitizer.py module

• Provides a class for doing the digitization of events

• The class holds all the settings for the digitization

• Function digitize_event which takes np.arrays of the true PMTs and
true times (and there are multiple entries per PMT)

Digitizer.py
• The digitization follows these steps:

1. For each true time we generate the number of pe’s following the
probability density function F(q)

2. Build a wavetrain of pulses following the papers model using the function
buildwavetrain
1. Each pulse shape given by the function f_waveform
2. And the noise by the function f_noise

3. Process the wavetrains to find times and charges using the function
WaveformsToTQ
1. Initial search for peaks is done to find the baseline, time and peak height of each

pulse using the function get_wf_peak_guesses, the output of the function is used
to fit each peak to a gaussian in the function get_times_charges_from_wf, which
returns the 10% of the gaussian time and area of gaussian as charge for each pulse

Digitizer.py
• After calling digitize_event you can access the result of the intermediate steps in the class

members

Testing

• Testing the new digitizer class with the truth data h5 file:
IWCD_mPMT_Short_emg_E0to1000MeV_truehits.h5

• Creating 3 classes to read initialize the h5 data
• First to initialize the digihits dataset

• Second to initialize the truth data, and use the digitization class with
parameters set to match the WCSim digitization, following 0.1 ns binning

• Third to initialize the truth data, and use the digitization class with parameters
set to match the IWCD 8 ns binning

Test the intermediate steps in digitization for
the 0.1 and 8 ns binning seperately
• Doing this by

1. Building waveforms

2. Finding peaks (first guess)

3. Fitting peaks

4. Calculating final charge

Building plots of our digitized event vs WCSim
Plot 1: WCSim time vs Our min-time Plot 2: WCSim charge vs Our charge

What we are working on now

• Parts of code run very slow, trying to optimize to speed up

• Finalize plotting of intermediate steps

