-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_sdxl.py
38 lines (31 loc) · 1.29 KB
/
run_sdxl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import torch
from PIL import Image
from pipeline_sdxl import StableDiffusionXLPipeline
from utils import load_prompts
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
model_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
prompts_file = 'prompts/imgen.txt'
prompts = load_prompts(prompts_file)
# prompts = ['Astronaut on Mars During sunset.']
negative_prompt = "blurry, ugly, duplicate, poorly drawn, deformed, mosaic"
folder_name = 'release_4k_imgen'
height=1024
width=1024
disable_freeu = 0
pipe = StableDiffusionXLPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
if not disable_freeu:
register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
generator = torch.Generator(device='cuda')
generator = generator.manual_seed(123)
os.makedirs(folder_name, exist_ok=True)
for index, prompt in enumerate(prompts):
print("prompt {}:".format(index))
print(prompt)
image = pipe(prompt, negative_prompt=negative_prompt, generator=generator,
num_inference_steps=50, guidance_scale=7.5,
height=height, width=width,
).images[0]
image.save("{}/img{}_{}.png".format(folder_name, index, height))