Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

按照文档导出Qwen2-0.5B-Instruct mnn报错 #3122

Closed
fengge123 opened this issue Dec 11, 2024 · 2 comments
Closed

按照文档导出Qwen2-0.5B-Instruct mnn报错 #3122

fengge123 opened this issue Dec 11, 2024 · 2 comments
Labels
User The user ask question about how to use. Or don't use MNN correctly and cause bug.

Comments

@fengge123
Copy link

fengge123 commented Dec 11, 2024

平台(如果交叉编译请再附上交叉编译目标平台):

Platform(Include target platform as well if cross-compiling):

wsl ubuntu2204

Github版本:

Github Version:

commit 2b899c1 (HEAD -> master, origin/master, origin/HEAD)

直接下载ZIP包请提供下载日期以及压缩包注释里的git版本(可通过7z l zip包路径命令并在输出信息中搜索Comment 获得,形如Comment = bc80b11110cd440aacdabbf59658d630527a7f2b)。 git clone请提供 git commit 第一行的commit id

Provide date (or better yet, git revision from the comment section of the zip. Obtainable using 7z l PATH/TO/ZIP and search for Comment in the output) if downloading source as zip,otherwise provide the first commit id from the output of git commit

编译方式:

Compiling Method

cd MNN/pymnn/pip_package
python3 build_deps.py llm
python3 setup.py install --deps llm --prefix=/mnt/d/workspace/MNN/install/python/

请在这里粘贴cmake参数或使用的cmake脚本路径以及完整输出
Paste cmake arguments or path of the build script used here as well as the full log of the cmake proess here or pastebin

编译日志:

Build Log:

粘贴在这里
Paste log here or pastebin

问题:

我参考下面文档,测试export 工具,
https://mnn-docs.readthedocs.io/en/latest/transformers/llm.html
我的命令是:
git clone https://www.modelscope.cn/qwen/Qwen2-0.5B-Instruct.git
存放到/mnt/d/workspace/llm-models/Qwen2-0.5B-Instruct
cd ./transformers/llm/export
python3 llmexport.py --path /mnt/d/workspace/llm-models/Qwen2-0.5B-Instruct/ --export mnn

报错:
💥 Failed load pretrained model
Traceback (most recent call last):
File "/mnt/d/workspace/MNN/transformers/llm/export/llmexport.py", line 2291, in load_pretrained
self.model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', trust_remote_code=True).eval()
File "/home/fg/.local/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 564, in from_pretrained
return model_class.from_pretrained(
File "/home/fg/.local/lib/python3.10/site-packages/transformers/modeling_utils.py", line 4010, in from_pretrained
with safe_open(resolved_archive_file, framework="pt") as f:
safetensors_rust.SafetensorError: Error while deserializing header: HeaderTooLarge

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/mnt/d/workspace/MNN/transformers/llm/export/llmexport.py", line 44, in wrapper
result = func(*args, **kwargs)
File "/mnt/d/workspace/MNN/transformers/llm/export/llmexport.py", line 2306, in load_model
self.load_pretrained(model_path)
File "/mnt/d/workspace/MNN/transformers/llm/export/llmexport.py", line 2293, in load_pretrained
self.model = AutoModel.from_pretrained(model_path, torch_dtype='auto', trust_remote_code=True).eval()
File "/home/fg/.local/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 564, in from_pretrained
return model_class.from_pretrained(
File "/home/fg/.local/lib/python3.10/site-packages/transformers/modeling_utils.py", line 4010, in from_pretrained
with safe_open(resolved_archive_file, framework="pt") as f:
safetensors_rust.SafetensorError: Error while deserializing header: HeaderTooLarge

补充:wsl ubuntu分配的是32G内存

@fengge123
Copy link
Author

模型没有下完整 ,问题解决

@jxt1234
Copy link
Collaborator

jxt1234 commented Dec 17, 2024

你应该没有安装 git lfs ,建议简单起见 pip install modelscope ,用modelscope 安装

@jxt1234 jxt1234 added the User The user ask question about how to use. Or don't use MNN correctly and cause bug. label Dec 17, 2024
@jxt1234 jxt1234 closed this as completed Jan 7, 2025
# for free to join this conversation on GitHub. Already have an account? # to comment
Labels
User The user ask question about how to use. Or don't use MNN correctly and cause bug.
Projects
None yet
Development

No branches or pull requests

2 participants