-
Notifications
You must be signed in to change notification settings - Fork 270
/
Copy pathfinetune_with_accelerate.sh
executable file
·36 lines (34 loc) · 1.34 KB
/
finetune_with_accelerate.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
export CUDA_VISIBLE_DEVICES=0,1,2,3
MODEL_SIZE=7B
NUM_GPUS=4
BATCH_SIZE_PER_GPU=1
TOTAL_BATCH_SIZE=128
GRADIENT_ACC_STEPS=$(($TOTAL_BATCH_SIZE/$NUM_GPUS/$BATCH_SIZE_PER_GPU))
echo "Training llama model ${MODEL_SIZE} using $NUM_GPUS GPUs, $BATCH_SIZE_PER_GPU batch size per GPU, $GRADIENT_ACC_STEPS gradient accumulation steps"
# You can also set --gradient_checkpointing or use `stage3_offloading_accelerate.conf` to save memory,
# but it will trade off speed.
accelerate launch \
--mixed_precision bf16 \
--num_machines 1 \
--num_processes $NUM_GPUS \
--use_deepspeed \
--deepspeed_config_file configs/ds_configs/stage3_no_offloading_accelerate.conf \
open_instruct/finetune.py \
--model_name_or_path ../hf_llama2_models/${MODEL_SIZE} \
--use_flash_attn \
--tokenizer_name ../hf_llama2_models/${MODEL_SIZE} \
--use_slow_tokenizer \
--train_file data/processed/tulu_v2/tulu_v2_data.jsonl \
--max_seq_length 8192 \
--preprocessing_num_workers 128 \
--per_device_train_batch_size $BATCH_SIZE_PER_GPU \
--gradient_accumulation_steps $GRADIENT_ACC_STEPS \
--learning_rate 2e-5 \
--lr_scheduler_type linear \
--warmup_ratio 0.03 \
--weight_decay 0. \
--num_train_epochs 2 \
--output_dir output/tulu_v2_${MODEL_SIZE}/ \
--with_tracking \
--report_to tensorboard \
--logging_steps 1