-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNNTesting.m
executable file
·78 lines (56 loc) · 1.5 KB
/
NNTesting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
%===========================================================================
% Program Pengujian MLP
% Variable yang dapat di update
% 1. JHneuron
% 2. Learning Rate
% 3. Epoch
% 4. MaxMSE
%===========================================================================
clc;
clear;
%===========================================================================
% Load hasil pelatihan dari file NNTraining.m
%===========================================================================
NNTraining
TestSet = ...
[3 3 1;
3 1 2;
2 3 1;
2 1 2;
1 3 1;
1 2 2;
1 1 1;];
TestKelas = [0 1 0 1 0 1 0];
JumPola = length(TestSet(:,1)) ;
JumBenar = 0;
for pp=1:JumPola,
CP = TestSet(pp,:);
A1 = [];
for ii=1:JHneuron,
v = CP * W1(:,ii);
A1 = [A1 1/(1+exp(-v))];
end
A2 = [];
for jj=1:JOneuron,
v = A1 * W2(:,jj);
A2 = [A2 1/(1+exp(-v))];
end
A3(pp) = A2;
%----------------------------------------------------------------------
% Pemetaan A2 menjadi kelas keputusan
% Jika A2 < 0.5 maka kelas = 0
%----------------------------------------------------------------------
for jj=1:JOneuron,
if A2(jj) < 0.5,
Kelas = 0;
else
Kelas = 1;
end
end
if Kelas == TestKelas(pp),
JumBenar = JumBenar + 1;
end
end
JumBenar
JumPola
display(['Akurasi JST = ' num2str((JumBenar/JumPola)*100) ' %']);