-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathrl.py
92 lines (69 loc) · 4.06 KB
/
rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np
from solution import Solution
class QLearning:
def __init__(self,nb_atts,actions,alpha=0.1,gamma=0.9,epsilon=0.1):
self.actions = actions
self.alpha = alpha
self.gamma = gamma
self.epsilon = epsilon
self.q_table = [ {} for i in range(nb_atts) ]
def get_max_q_value(self,solution,actions_vals):
max_val = 0.0
arg_max = 0
for i in actions_vals: # Basic itirative max search from a list of possible actions
state_i = self.get_next_state(solution,i)
state_i_acc = solution.get_accuracy(state_i)
if state_i_acc > max_val:
max_val = self.get_q_value(solution,i) + state_i_acc
arg_max = i
return max_val, arg_max # We return the max q_value and the action that led to it from that state
def get_q_value(self,solution,action):
state = solution.get_state()
if not Solution.str_sol(state) in self.q_table[Solution.nbrUn(state)]:
self.q_table[Solution.nbrUn(state)][Solution.str_sol(state)] = {}
if not str(action) in self.q_table[Solution.nbrUn(state)][Solution.str_sol(state)]:
# We initilize the q_table with 0
self.q_table[Solution.nbrUn(state)][Solution.str_sol(state)][str(action)] = 0
return self.q_table[Solution.nbrUn(state)][Solution.str_sol(state)][str(action)]
def set_q_value(self,solution,action,val):
state = solution.get_state()
self.q_table[Solution.nbrUn(state)][Solution.str_sol(state)][str(action)] = val
def step(self,solution,actions,flip):
if len(actions) != 0:
if len(actions) > flip:
self.actions = [actions[i] for i in sorted(random.sample(range(len(actions)), flip))]
else:
self.actions = [actions[i] for i in sorted(random.sample(range(len(actions)), 1))]
if np.random.uniform() > self.epsilon :
#action_values = [self.actions[i] for i in sorted(random.sample(range(len(self.actions)), sample_size))]
action_values = self.actions
max_val = self.get_max_q_value(solution,action_values)[0] # getting the max next q_value
argmax_actions=[self.get_max_q_value(solution,action_values)[1]] # saving the action that maxmizes the reward
# There may be actions that have the same reward, so we add them to the argmax_avtions
for ac in action_values :
ac_state = self.get_next_state(solution,ac)
ac_state_q_val = self.get_q_value(solution,ac) + solution.get_accuracy(ac_state)
if ( ac_state_q_val >= max_val ):
argmax_actions.append(ac)
# We could make the condition "equal", because theorically there won't be any bigger q_value
next_action = np.random.choice(argmax_actions) # We choose a random action from eqaul reward actions
next_state = self.get_next_state(solution,next_action)
else : # This is the exploration condition
next_action = np.random.choice(self.actions)
next_state = self.get_next_state(solution,next_action)
if self.epsilon > 0 :
self.epsilon -= 0.0001
if self.epsilon < 0 :
self.epsilon = 0
return next_state, next_action
def get_next_state(self,solution,action):
next_state = solution.get_state()
next_state[action] = (next_state[action]+1) % 2
if (Solution.nbrUn(next_state) != 0):
return next_state
else:
return solution.get_state()
def learn(self,current_sol,current_action,reward,next_sol):
next_action = self.get_max_q_value(next_sol,self.actions)[1] # Get the action with the max reward
new_q = reward + self.gamma * self.get_q_value(next_sol,next_action) #This part will be multiplied by alpha
self.set_q_value(current_sol,current_action,(1 - self.alpha)*self.get_q_value(current_sol,current_action) + self.alpha*new_q) # This is the basic Q-learning formula