
14318618

Please note: Had to add ‘using System.Collections’ to Parser as I am using
ArrayList in ATG, also added few function in CodeGen for parameter passing.

Constant Report

To define a constant I made a new symbol “<-” to distinguish from variable
declaration “:=”.
constant keyword was also added to set apart constants and variable. Also in the
.TAS file, constants can be declared locally or globally.

Since we cannot redefine a constant, and try to redefine, it will give us a compilation
error, since it throws an error, and in the tastier.s file it gives “cannot redefine a
constant variable compilation error(s)”.

When referring to a constant variable, the keyword ‘constant’ should be mentioned.
For example
total := total + ‘constant’ X

this tells the compiler that X is a constant

1-Dimensional Array Report

For this assignment I extended the context free grammar for Tastier for the use

of 1D array. My 1D array implementation currently only supports int and bool

types. The following is the syntax to declare an array:

“array” type identifier “[” number “]”;

The array keyword must be used in order to declare an array, or access an

array. The array can be declared locally or globally. The ArrayDecl in the

Tastier.ATG file expects the “array” keyword followed by type and identifier,

followed by “[” and a number followed by “]”. The string value is converted

into an int using Convert.ToInt32(t.val), this value is the length of the array.

When the identifier is encountered, an object by its name(if an object by that

name has not already been created) is created and the length of the array is

stored in the symbol table. In the SymTab.cs, I have different approaches to

allocate memory space for different objects, depending on either if the object

is a scalar or non scalar. An array is considered non scalar and with the aid of

the array’s length I am able to allocate required memory space on the stack for

14318618

the array in the SymTab.cs.

The following is the syntax for array statements: “array” identifier “[” index “]”

“:=” Expr “;” array x[3] := 7;

In the Stat section, for array statements, it finds the array object and before

any other action is taken, it checks if the index defined is within the bounds of

the specified array, if it isn’t, an “array out of bounds ”SemErr is thrown.

If index is within the bounds, the next step taken is to store the value which is

in the register,reg of “Expr” into the array index. Hence, the function

StoreIndexedGlobal or StoreIndexedLocal is called from the CodeGen file

depending on the lexic level.

If a variable wants to access the value of a certain array index, the syntax is as

following:

int var; var := “array” x“[”index “]”;

Firstly for this implementation, I check whether the array specified is actually

an array, if it is not a SemErr is thrown informing that it expects an array. The

second step I take is to ensure that the index specified is within the array, if it

is not then SemErr is thrown saying “array out of bounds”. To transfer the

value stored in a particular array index into a

variable, the LoadIndexedLocal or LoadIndexedGlobal functions are called from

the CodeGen file depending on the current lexic level.

An improvement I could have made for my 1D array implementation was that

instead of using number when declaring an array, instead of using number, I

could have used an expression.

14318618

Conditional statement and for loop statement Report

The aim for this assignment was to extend attribute translation grammar for
the Tastier language, so it supports conditional assignment statement and a
structured loop statement.

Implementation of conditional assignment

The following is the syntax for a conditional assignment:

 <identifier>:=<condition>?<expression1>:<expression2>

Here is the code snippet from .TAS file
t1:= 3;
t2:= 10;
t3:= t2?t1?t2+4:t1-2;

To implement the conditional assignment, I had to extend the Stat section in
the ATG file.

a Statement could be an identifier followed by a “:=”, followed by an
expression. This expression may also be followed by a ?, this is achieved by
following the Expr with [] which tells the compiler the grammar after the [is
optional. The ? acts as a guard/condition, if the expression evaluates to True
then the expression before “:” is the value of the identifier else the expression
after the “:” is the value of the identifier.

In the above snippet, t3’s value is either t2+4 or t1-2 depending on the
evaluation of t2>t1.

Once the Expr is evaluated, if the expression evaluates to False then we branch
to the second expression, this is done by executing gen.BranchFalse(L2), the
label L2 is generated just before the “:”. If the original expression (the
expression to be evaluated) is True, the we simply follow through and the
identifier gets the value of the first expression. After we store the result of the
expression into identifier, we branch to end, so we don’t execute the code for
the second expression.

14318618

If the first expression evaluates to true, we should exit the conditional
statement and not evaluate the next expression or else an incorrect result will
be obtained.

Implementation of the for loop statement

The following is the syntax for my implementation of Loop Statement:

 for (initial action; update action; terminating condition)
 do { Stat}

And this is the code snippet from TastierProgram.TAS for a for loop

r:=0;
for(ix:=1;ix:=ix+1;ix<3;)
do
{
r:=r + 1;
}

The concept behind the implementation of the for loop structure is similar to
the conditional statement structure grammar, at each iteration we evaluate
the terminating condition. If it evaluates to True then we execute whatever
instructions are inside the do. After we execute the instructions inside the do,
we loop/branch back to the same terminating condition and re-evaluate it, if
this time the condition evaluates to False we exit the for loop, and branch out
and execute instructions after the for loop.

Below is a code snippet of the do {…} statement, the Stat is executed if and
only if terminating condition is True, and we branch back to label L1 which is
where the terminating condition is. When terminating condition evaluates to
False we branch to the Label L2, so Stat is not executed and we continue with
the instructions after the for loop.

14318618

Execrcise 7

Implementation of switch statement

For my extra feature I implemented switch case statement. Unlike if else
statements, the switch statement can have a number of possible paths.

The syntax for the switch statement is:

switch(variable){

case 1: Stat; break;
case 2: Stat; break;
case n: Stat; break;
default: Stat; break;
}

The Stat and break being optional.

The switch expects an Ident; once it finds the object in the symbol table it loads
the value of the variable into a register, for this purpose let us call the register
reg.

The value of reg is then compared with the cases, each case expects an
Expr<reg2,type2>. The value of the register to be compared is stored in reg2,
hence both reg(variable to be compared) and reg2(case value) are compared by
calling gen.RelOp(Op.EQU,reg2,reg). If the comparison is False, then we branch
to the next case else we exit the switch case statement. If none of the case
values match the variable’s value then it will fall through and execute the default
statement and then exit the switch case statement.

14318618

Passing Parameters

When the compiler sees a variable declaration, it sets up a memory location
for each variable that is declared. The compiler keeps a symbol table which
keeps track of the relationship between variable’s symbolic name and the
address of the memory location where the variable will reside.

int i,j;
float x;
char c1;
(In this example I am assuming int take 2 bytes, float 4 bytes)

This is how the symbol table will look like:

variable address

i 2000

j 2002

x 2004
c1 2008

So as the variable are set up in memory this is how memory will look like:

space for i

space for j

space for x

space for c1

2000

2002

2004

2008

2009

14318618

Passing parameters by Reference

When the compiler sees a subroutine call that has one or more reference
parameters, it generates machine code to copy the address of the actual
parameter to the stack. Since all the address calculations are done in R2, the
method, moveRegister from codeGen was called to move the address to a
fresh register which is obtained by calling gen.getRegister(). The address then
is pushed onto the stack by calling gen.pushParam(adr). This pushes the
address onto the system stack.

Before entering a procedure call we first branch to the enter subroutine and
do the necessary housekeeping to enter the procedure, we push the
parameters, the return address, lexic level delta, static link and dynamic link
and then we reserve space for the local variables, respectively.

At the end of every procedure, the compiler will generate an instruction that
will reset the state of the stack as it was before calling the procedure. Because
by definition the stack pointer, TOP, will point at the topmost value on the
stack, changing its value will effectively “delete” the parameters. The stack
pointer register holds the address of the topmost value of the stack at runtime.
The space allocated for parameters vary from one procedure call to another
depending on the number of parameters and their types.

As the parameters are pushed onto the stack, an offset for each parameter is
recorded relative to the base pointer. For my implementation, the parameters
are stored in an ArrayList and the position of each parameter is the offset.

the syntax for passing parameters is as following:

foo(x;y;)

Each parameter must be followed by a ‘;’

14318618

suppose if the function foo(num1, num2) is called; the compiler would issue
machine language instructions to copy the address for num1,num2 order onto
the system stack(In my implementation the parameters are pushed as they
appear, First Come First Serve order). When the code executes, the stack will
look similar to this:
(this drawing assumes address takes 4 bytes)

The offsets of these parameters are linked to the procedure object in the
symbol table, as mentioned earlier the parameters are pushed as they are
encountered, since num1 is seen first, it will be pushed first and num2 will be
the last parameter to be pushedThe parameters are added to the ArrayList and
reversed at the end, so the index of the parameters match the offset in the
stack. For example num1 is added to the ArrayList and then num2 is added.
This ArrayList is then reversed so num1 is at position 2 and num2 is at

&num2
2002

&num1
2000

4000

4004

4008
8

14318618

position1(this is not the case at least in C, as they are pushed in the reverse
order).

Suppose if the subroutine foo looks like this:

void foo(int x,int y){
total := total + x;
total := total + y;
}

When the procedure refers to one of its parameters, the compiler generates
an instruction that adds the subtracts the BP and offset in the symbol table.
This will give the address in the stack that holds the address of the variable.
The instruction then fetches the variable address from this location. Then the
compiler proceeds to retrieve the value of the variable at the address fetched
from the stack.

For example to get the value of x when evaluating Statement total:=total + x,
the compiler will generate an instruction that will subtract the BP value and
the offset of x (which in this case will be 2 as num1 is in the second element in
the ArrayList) to give the value 4004. This ‘points to’ the address of num1, the
address is then loaded into a register and another instruction retrieves the
value stored at address 2000.

The implementation also has parameter type checking and that correct
number of parameters are passed.

For the implementation for both pass by reference and pass by value, I would
have concatenated ‘&’ for pass by reference and ‘*’ for pass by value to
distinguish what to push onto the stack(the address of the variable or the
value of the variable).

&num2 y
2000

&num1  x
2002

4000

4004

4008

