-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
246 lines (216 loc) · 9.62 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
from torch._C import device
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
import yaml
import numpy as np
from tqdm import tqdm
from datasets.LID import LID_Dataset
from datasets.ASR import ASR_Dataset
from datasets.joint import ALL_Dataset
from models.model import Downstream, Featurizer
from torch.utils.tensorboard import SummaryWriter
from sklearn.metrics import f1_score
import torch.nn.functional as F
import os
import math
import glob
import copy
import editdistance
import torchaudio
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence, pad_sequence
from datasets.text import load_text_encoder
from tools.optim import get_optimizer
from tools.schedulers import get_scheduler
from collections import defaultdict
import matplotlib.pyplot as plt
from time import localtime, strftime
import torch.distributed as dist
import torch.multiprocessing as mp
from s3prl.utility.helper import zero_mean_unit_var_norm
config_path = './configs/finetune/base_960/base_001.yml'
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
class wrapped_upstream(nn.Module):
def __init__(self, upstream, gpus=False):
super().__init__()
self.model = upstream.model
for param in self.model.feature_extractor.parameters():
param.requires_grad = False
# if gpus:
# self.model.encoder = nn.DataParallel(self.model.encoder)
print(self.model)
self.wav_normalize = upstream.wav_normalize
self.apply_padding_mask = True
self.numpy_wav_normalize = False
def forward(self, wavs):
device = wavs[0].device
if self.wav_normalize:
if self.numpy_wav_normalize:
wavs = zero_mean_unit_var_norm([wav.cpu().numpy() for wav in wavs])
wavs = [torch.from_numpy(wav).to(device) for wav in wavs]
else:
wavs = [F.layer_norm(wav, wav.shape) for wav in wavs]
wav_lengths = torch.LongTensor([len(wav) for wav in wavs]).to(device)
wav_padding_mask = ~torch.lt(
torch.arange(max(wav_lengths)).unsqueeze(0).to(device),
wav_lengths.unsqueeze(1),
)
print(wav_padding_mask)
padded_wav = pad_sequence(wavs, batch_first=True)
print(padded_wav.size())
results = self.model.extract_features(
padded_wav, wav_padding_mask if self.apply_padding_mask else None
)
results = results['x']
# print(results)
print(results.size())
return results
class Runner():
def __init__(self, config):
self.config = config
self.id = self.config['id']
self.exp_name = '/'.join(['finetune', self.config['UPSTREAM']['name'], self.id])
self.outdir = f'./results/{self.exp_name}'
if not os.path.exists(self.outdir): os.makedirs(self.outdir)
time_str = strftime("%Y-%m-%d_%H-%M", localtime())
with open(self.outdir+f'/{time_str}_config.yml', 'w') as yml_f:
yaml.dump(self.config, yml_f, default_flow_style=False)
self.writer = SummaryWriter(log_dir=self.outdir)
self.dictionary = load_text_encoder(self.config['DATASET']['dict_mode'], self.config['DATASET']['dict_path'])
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.devices = range(torch.cuda.device_count())
upstream = torch.hub.load('s3prl/s3prl', config['UPSTREAM']['name']).to(self.device)
self.upstream = wrapped_upstream(upstream, len(self.devices)>1)
randn_wavs = [ torch.randn(16000).to(self.device), torch.randn(16000).to(self.device) ]
features = self.upstream(randn_wavs)
# print(feature)
self.upstream_dim = features.size()[-1]
self.specaug_asr = None
if self.config.get('SPECAUG'):
from tools.specaug import SpecAug
self.specaug = SpecAug(**self.config["SPECAUG"])
self.linear = nn.Linear(self.upstream_dim, self.dictionary.vocab_size)
self.blank = self.dictionary.pad_idx
self.asr_loss = nn.CTCLoss(
blank=self.blank,
zero_infinity = True
)
self.records = defaultdict(list)
self.best_score = 100.
self.decoder = None
self.ckpt = None
if self.config.get('load_ckpt', False):
if self.config['load_ckpt'] == 'last':
ckpt_pths = glob.glob(f'{self.outdir}/states-*.ckpt')
ckpt_pths = sorted(ckpt_pths, key=lambda pth: int(pth.split('-')[-1].split('.')[0]))
if len(ckpt_pths) == 0:
print(f'No ckpt named as \'states-*.ckpt\' was found in \'{self.outdir}\'')
else:
last_ckpt_pth = ckpt_pths[-1]
self.ckpt = torch.load(last_ckpt_pth)
if self.config['load_ckpt'] == 'best':
best_ckpt_pths = glob.glob(f'{self.outdir}/best*.ckpt')
assert len(ckpt_pths) == 1
self.ckpt = torch.load(best_ckpt_pths[0])
def _get_optimizer(self, trainable_models, config ):
total_steps = config['runner']['total_steps']
optimizer_conf = config['optimizer']
optimizer = get_optimizer(
trainable_models,
total_steps,
optimizer_conf
)
# self._load_weight(optimizer, 'Optimizer')
return optimizer
def _get_scheduler(self, optimizer, config):
total_steps = config['runner']['total_steps']
scheduler_conf = config['scheduler']
scheduler = get_scheduler(
optimizer,
total_steps,
scheduler_conf
)
# self._load_weight(scheduler, 'Scheduler')
return scheduler
def train(self, rank, world_size):
print(f"Running basic DDP example on rank {rank}.")
setup(rank, world_size)
self.upstream.to(rank)
self.specaug.to(rank)
self.linear.to(rank)
if self.ckpt:
self.upstream.load_state_dict(self.ckpt['Upstream'])
self.linear.load_state_dict(self.ckpt['Linear'])
# for param in self.upstream.model.feature_extractor.parameters():
# param.requires_grad = False
if not hasattr(self, 'train_dataloader'):
self.train_dataset = ASR_Dataset('dev', self.dictionary, **self.config['DATASET'])
self.train_dataloader = DataLoader(self.train_dataset, batch_size=1, collate_fn=self.train_dataset.collate_fn, shuffle=True)
if len(self.devices) > 1:
self.upstream = DDP(self.upstream, device_ids=[rank])
# tqdm.write(f'Using multi gpu, ids: {self.devices}')
# self.upstream.model = nn.DataParallel(self.upstream.model)
pbar = tqdm(total=self.config['runner']['total_steps'], dynamic_ncols=True, desc='ASR overall')
trainable_models = [self.upstream, self.linear]
# trainable_params = list(self.featurizer_asr.parameters()) + list(self.downstream_asr.parameters())
optimizer = self._get_optimizer(trainable_models, self.config)
if self.ckpt:
optimizer.load_state_dict(self.ckpt['optimizer'])
pbar.update(self.ckpt['Step'])
scheduler = None
if self.config.get('scheduler', False):
scheduler = self._get_scheduler(optimizer, self.config)
if self.ckpt:
scheduler.load_state_dict(self.ckpt['scheduler'])
for batch_id, (wavs, labels) in enumerate(tqdm(self.train_dataloader, dynamic_ncols=True, total=len(self.train_dataloader), desc=f'training')):
wavs, labels = [ torch.FloatTensor(wav).to(self.device) for wav in wavs ], [ torch.LongTensor(label).to(self.device) for label in labels ]
# wavs = pad_sequence(wavs, batch_first=True).to(self.device)
# wavs = torch.FloatTensor(wavs)
# print(wavs.size())
features = self.upstream(wavs)
# print(features.keys())
# features = features['default']
print(features.size())
features, _ = self.specaug(features)
log_probs_len = torch.IntTensor([len(feat) for feat in features]).to('cpu')
labels_len = torch.IntTensor([len(lb) for lb in labels]).to('cpu')
features = pad_sequence(features, batch_first=True).to(self.device)
padded_labels = pad_sequence(labels, batch_first=True).to(self.device)
tqdm.write(f'{features.size()}')
# print(features[1].size())
logits = self.linear(features)
# print(logits)
tqdm.write(f'{logits.size()}')
tqdm.write(f'{labels_len}')
log_probs = nn.functional.log_softmax(logits, dim=-1)
loss = self.asr_loss(
log_probs.transpose(0, 1), # (N, T, C) -> (T, N, C)
padded_labels,
log_probs_len,
labels_len,
)
tqdm.write(f'{loss}')
cleanup()
assert 1==2
def main():
torchaudio.set_audio_backend('sox_io')
with open(config_path, 'r') as yml_f:
config = yaml.safe_load(yml_f)
runner = Runner(config)
n_gpus = torch.cuda.device_count()
world_size = n_gpus
if config['task'] == 'train':
mp.spawn(runner.train,
args=(world_size,),
nprocs=world_size,
join=True)
# runner.train()
if __name__ == '__main__':
main()