-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathridge.py
260 lines (158 loc) · 7.73 KB
/
ridge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Angus Dempster, Chang Wei Tan, Lynn Miller
# Navid Mohammadi Foumani, Daniel F Schmidt, and Geoffrey I Webb
# Highly Scalable Time Series Classification for Very Large Datasets
# AALTD 2024 (ECML PKDD 2024)
import numpy as np
import torch, torch.nn as nn
from tqdm import tqdm
from utils import stratified_split
def binarize(Y, n):
return -torch.ones(Y.shape[0], n).scatter(-1, torch.tensor(Y[:, None]).long(), -1)
class Scaler(nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.register_buffer("_mean", torch.tensor(0))
self.register_buffer("_std", torch.tensor(0))
self.register_buffer("_count", torch.tensor(0))
self.register_buffer("_eps", torch.tensor(kwargs.get("eps", np.finfo(np.float32).eps * 10)))
self._with_std = kwargs.get("with_std", True)
def partial_fit(self, X):
batch_size = X.shape[0]
new_count = self._count + batch_size
batch_mean = X.mean(0)
batch_std = X.std(0) if batch_size > 1 else 0
self._mean = self._mean + ((batch_mean - self._mean) * (batch_size / new_count))
self._std = self._std + ((batch_std - self._std) * (batch_size / new_count))
self._count = new_count
def fit(self, X):
self._mean = X.mean(0)
self._std = X.std(0)
def scale(self, X):
if self._with_std:
return (X - self._mean) / (self._std + self._eps)
else:
return (X - self._mean)
class RidgeClassifier():
def __init__(self, transform, device = "cpu", **kwargs):
self.transform = transform
self.device = device
self.X_scaler = kwargs.get("X_scaler", Scaler())
self.Y_scaler = kwargs.get("Y_scaler", Scaler(with_std = False))
self.lambdas = kwargs.get("lambdas", torch.logspace(-6, 6, 21))
self.verbose = kwargs.get("verbose", False)
def fit(self, training_data, **kwargs):
n = training_data.shape[0]
p = self.transform.num_features
k = kwargs.get("num_classes", len(training_data.classes))
max_val_size = kwargs.get("max_val_size", 8_192)
val_size = min(int(training_data.shape[0] * 0.2), max_val_size)
eps = np.finfo(np.float32).eps
# ======================================================================
# == n < p =============================================================
# ======================================================================
if n < p:
X0 = torch.zeros((n, p), device = self.device)
Y0 = torch.zeros((n, k), device = self.device)
batch_count = np.ceil(training_data.shape[0] / training_data.batch_size)
i = 0
for X, Y in tqdm(training_data, total = batch_count, disable = not self.verbose):
j = i + X.shape[0]
_X = self.transform(torch.tensor(X.astype(np.float32, copy = False)).to(self.device))
_Y = binarize(Y, k)
X0[i:j] = _X
Y0[i:j] = _Y
i = j
self.X_scaler.fit(X0)
X0 = self.X_scaler.scale(X0)
self.Y_scaler.fit(Y0)
self.B0 = self.Y_scaler._mean.to(self.device)
Y0 = self.Y_scaler.scale(Y0)
S2, U = torch.linalg.eigh((X0 @ X0.T))
S2 = S2.clip(eps)
S = S2.sqrt()
V = (X0.T @ U) * (1 / S)
R = U * S
R2 = R ** 2
RTY = R.T @ Y0
best_alpha_hat = None
best_error = np.inf
Y_TRUE = Y0.argmax(-1)
for lambda_ in self.lambdas * np.sqrt(n):
alpha_hat = (1 / (S2[:, None] + lambda_)) * RTY
Y_hat = R @ alpha_hat
E = Y0 - Y_hat
diag_H = (R2 / (S2 + lambda_)).sum(1)
E_loocv = E / (1 - diag_H[:, None]).clip(eps)
err_lambda = (E_loocv ** 2).mean()
if err_lambda < best_error:
best_error = err_lambda
best_alpha_hat = alpha_hat
delta = E_loocv - E
Y_loocv = Y_hat - delta
YP = Y_loocv.argmax(-1)
self.B = V @ best_alpha_hat
# ======================================================================
# == n >= p ============================================================
# ======================================================================
else:
TR, VA = stratified_split(training_data.Y, val_size)
TR = np.sort(TR)
VA = np.sort(VA)
training_data_1 = training_data[TR]
validation_data = training_data[VA]
n1 = training_data_1.shape[0]
XTX = torch.zeros((p, p), device = self.device)
XTY = torch.zeros((p, k), device = self.device)
batch_count = np.ceil(training_data_1.shape[0] / training_data_1.batch_size)
for X, Y in tqdm(training_data_1, total = batch_count, disable = not self.verbose):
_X = self.transform(torch.tensor(X.astype(np.float32, copy = False)).to(self.device))
_Y = binarize(Y, k).to(self.device)
self.X_scaler.partial_fit(_X)
self.Y_scaler.partial_fit(_Y)
_XT = _X.T
XTX = XTX + (_XT @ _X)
XTY = XTY + (_XT @ _Y)
mX = self.X_scaler._mean
sX = self.X_scaler._std + np.finfo(np.float32).eps * 10
self.B0 = self.Y_scaler._mean.to(self.device)
mY = self.B0
mXX = mX[:, None] @ mX[None, :] * np.float32(n1)
sXX = sX[:, None] @ sX[None, :]
mXY = mX[:, None] @ mY[None, :] * np.float32(n1)
XTX = (XTX - mXX) / sXX
XTY = (XTY - mXY) / sX[:, None]
S2, V = torch.linalg.eigh(XTX.to(self.device))
S2 = S2.clip(eps)
XV = torch.zeros((validation_data.shape[0], p), device = self.device)
YV = torch.zeros(validation_data.shape[0], dtype = torch.int64, device = self.device)
i = 0
for X, Y in validation_data:
j = i + X.shape[0]
_XV = self.transform(torch.tensor(X.astype(np.float32)).to(self.device))
_XV = self.X_scaler.scale(_XV)
XV[i:j] = _XV
YV[i:j] = torch.tensor(Y, dtype = torch.int64)
i = j
best_error = np.inf
self.YV = YV.clone()
self.XV = XV.clone()
for lambda_ in self.lambdas * np.sqrt(n1):
_XTXi = (V * (1 / (S2 + lambda_))) @ V.T
_B = _XTXi @ XTY
err_lambda = (YV != ((XV @ _B) + self.B0).argmax(-1)).float().mean()
if err_lambda < best_error:
best_error = err_lambda
self.B = _B.clone()
validation_data.close()
training_data_1.close()
def _predict(self, X):
_X = self.transform(torch.tensor(X.astype(np.float32, copy = False)).to(self.device))
_X = self.X_scaler.to(_X.device).scale(_X)
return _X @ self.B + self.B0
def score(self, data):
incorrect = 0
count = 0
for X, Y in tqdm(data, total = np.ceil(data.shape[0] / data.batch_size), disable = not self.verbose):
incorrect += (torch.tensor(Y).to(self.device) != self._predict(X).argmax(-1)).sum()
count += X.shape[0]
return incorrect / count