-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
267 lines (222 loc) · 8.43 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""
Most codes from https://github.com/carpedm20/DCGAN-tensorflow
"""
from __future__ import division
import math
import random
import pprint
import scipy.misc
import numpy as np
from time import gmtime, strftime
from six.moves import xrange
import os, gzip
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow.contrib.slim as slim
try:
import cPickle as pickle
except ImportError:
import _pickle as pickle
def one_hot(x, n):
x = np.array(x)
assert x.ndim == 1
return np.eye(n)[x]
def load_cifar10(dataset, num_training=49000, num_validation=1000, num_test=10000):
'''
Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
it for the neural net classifier.
'''
# Load the raw CIFAR-10 data
X_train, y_train, X_test, y_test = load(os.path.join('dataset', 'cifar-10-batches-py'))
# Subsample the data
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]
X_train = X_train.astype(np.float64) / 255.
X_val = X_val.astype(np.float64) / 255.
X_test = X_test.astype(np.float64) / 255.
y_train = one_hot(y_train, 10)
y_val = one_hot(y_val, 10)
y_test = one_hot(y_test, 10)
seed = 547
np.random.seed(seed)
np.random.shuffle(X_train)
np.random.seed(seed)
np.random.shuffle(y_train)
# mean_image = np.mean(X_train, axis=0)
# std = np.std(X_train)
# X_train -= mean_image
# X_val -= mean_image
# X_test -= mean_image
#
# X_train /= std
# X_val /= std
# X_test /= std
return np.concatenate((X_train, X_val, X_test)), np.concatenate((y_train, y_val, y_test))
def load_CIFAR_batch(filename):
''' load single batch of cifar '''
with open(filename, 'rb') as f:
# unpickle a python2 object in python3
datadict = pickle.load(f) #, encoding='latin1')
X = datadict['data']
Y = datadict['labels']
X = X.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float")
Y = np.array(Y)
return X, Y
def load(ROOT):
''' load all of cifar '''
xs = []
ys = []
for b in range(1, 6):
f = os.path.join(ROOT, 'data_batch_%d' % (b, ))
X, Y = load_CIFAR_batch(f)
xs.append(X)
ys.append(Y)
Xtr = np.concatenate(xs)
Ytr = np.concatenate(ys)
del X, Y
Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch'))
return Xtr, Ytr, Xte, Yte
def load_mnist(dataset_name):
data_dir = os.path.join("./data", dataset_name)
def extract_data(filename, num_data, head_size, data_size):
with gzip.open(filename) as bytestream:
bytestream.read(head_size)
buf = bytestream.read(data_size * num_data)
data = np.frombuffer(buf, dtype=np.uint8).astype(np.float)
return data
data = extract_data(data_dir + '/train-images-idx3-ubyte.gz', 60000, 16, 28 * 28)
trX = data.reshape((60000, 28, 28, 1))
data = extract_data(data_dir + '/train-labels-idx1-ubyte.gz', 60000, 8, 1)
trY = data.reshape((60000))
data = extract_data(data_dir + '/t10k-images-idx3-ubyte.gz', 10000, 16, 28 * 28)
teX = data.reshape((10000, 28, 28, 1))
data = extract_data(data_dir + '/t10k-labels-idx1-ubyte.gz', 10000, 8, 1)
teY = data.reshape((10000))
trY = np.asarray(trY)
teY = np.asarray(teY)
X = np.concatenate((trX, teX), axis=0)
y = np.concatenate((trY, teY), axis=0).astype(np.int)
seed = 547
np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(y)
y_vec = np.zeros((len(y), 10), dtype=np.float)
for i, label in enumerate(y):
y_vec[i, y[i]] = 1.0
return X / 255., y_vec
def check_folder(log_dir):
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def show_all_variables():
model_vars = tf.trainable_variables()
slim.model_analyzer.analyze_vars(model_vars, print_info=True)
def get_image(image_path, input_height, input_width, resize_height=64, resize_width=64, crop=True, grayscale=False):
image = imread(image_path, grayscale)
return transform(image, input_height, input_width, resize_height, resize_width, crop)
def save_images(images, size, image_path):
return imsave(inverse_transform(images), size, image_path)
def save_images_2(images, size, image_path):
return imsave(images, size, image_path)
def imread(path, grayscale = False):
if (grayscale):
return scipy.misc.imread(path, flatten = True).astype(np.float)
else:
return scipy.misc.imread(path).astype(np.float)
def merge_images(images, size):
return inverse_transform(images)
def merge(images, size):
h, w = images.shape[1], images.shape[2]
if (images.shape[3] in (3,4)):
c = images.shape[3]
img = np.zeros((h * size[0], w * size[1], c))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j * h:j * h + h, i * w:i * w + w, :] = image
return img
elif images.shape[3]==1:
img = np.zeros((h * size[0], w * size[1]))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j * h:j * h + h, i * w:i * w + w] = image[:,:,0]
return img
else:
raise ValueError('in merge(images,size) images parameter ''must have dimensions: HxW or HxWx3 or HxWx4')
def imsave(images, size, path):
image = np.squeeze(merge(images, size))
return scipy.misc.imsave(path, image)
def center_crop(x, crop_h, crop_w, resize_h=64, resize_w=64):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h)/2.))
i = int(round((w - crop_w)/2.))
return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w], [resize_h, resize_w])
def transform(image, input_height, input_width, resize_height=64, resize_width=64, crop=True):
if crop:
cropped_image = center_crop(image, input_height, input_width, resize_height, resize_width)
else:
cropped_image = scipy.misc.imresize(image, [resize_height, resize_width])
return np.array(cropped_image)/127.5 - 1.
def inverse_transform(images):
return (images+1.)/2.
""" Drawing Tools """
# borrowed from https://github.com/ykwon0407/variational_autoencoder/blob/master/variational_bayes.ipynb
def save_scattered_image(z, id, z_range_x, z_range_y, name='scattered_image.jpg'):
N = 10
plt.figure(figsize=(8, 6))
plt.scatter(z[:, 0], z[:, 1], c=np.argmax(id, 1), marker='o', edgecolor='none', cmap=discrete_cmap(N, 'jet'))
plt.colorbar(ticks=range(N))
axes = plt.gca()
axes.set_xlim([-z_range_x, z_range_x])
axes.set_ylim([-z_range_y, z_range_y])
plt.grid(True)
plt.savefig(name)
# borrowed from https://gist.github.com/jakevdp/91077b0cae40f8f8244a
def discrete_cmap(N, base_cmap=None):
"""Create an N-bin discrete colormap from the specified input map"""
# Note that if base_cmap is a string or None, you can simply do
# return plt.cm.get_cmap(base_cmap, N)
# The following works for string, None, or a colormap instance:
base = plt.cm.get_cmap(base_cmap)
color_list = base(np.linspace(0, 1, N))
cmap_name = base.name + str(N)
return base.from_list(cmap_name, color_list, N)
def rescale(images):
# rescale from 0-1 to 0-255
batch_img_list = []
for idx in range(64):
vMin = np.amin(images[idx])
vMax = np.amax(images[idx])
img_arr = images[idx].reshape(32*32*3,1) # flatten
for i, v in enumerate(img_arr):
img_arr[i] = (v-vMin)/(vMax-vMin)
img_arr = img_arr.reshape(32,32,3) # M*N*3
batch_img_list.append(img_arr)
return np.array(batch_img_list)
def save_matplot_img(images, size, image_path):
# value must set between 0. with 1.
for idx in range(64):
vMin = np.amin(images[idx])
vMax = np.amax(images[idx])
img_arr = images[idx].reshape(32*32*3,1) # flatten
for i, v in enumerate(img_arr):
img_arr[i] = (v-vMin)/(vMax-vMin)
img_arr = img_arr.reshape(32,32,3) # M*N*3
# matplot display
plt.subplot(8,8,idx+1),plt.imshow(img_arr, interpolation='nearest')
#plt.title("pred.:{}".format(np.argmax(self.data_y[0]),fontsize=10))
plt.axis("off")
plt.savefig(image_path)