-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynamic.py
executable file
·90 lines (66 loc) · 2.56 KB
/
dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python
import myokit
import matplotlib.pyplot as pl
from manual_APD import ap_duration
import numpy as np
# Get the model
m = myokit.load_model('tentusscher-2006.mmt')
# Initial pacing, step size to decrease and minimum to decrease to
pcl = 800
step_size = -20
min_pcl = 40
paces = (pcl - min_pcl)/abs(step_size) + 1
# How many beats to do per pacing cycle length
beats_per_pace = 50
# Pre pace at this intial pacing
p = myokit.pacing.blocktrain(pcl, 0.5, offset=0, level=1.0, limit=0)
s = myokit.Simulation(m, p,apd_var='membrane.V')
s.pre(pcl * 40)
# Set threshold for AP repolarisation
threshold = 0.9 * s.state()[m.get('membrane.V').indice()]
# Empty protocol
p = myokit.Protocol()
s = myokit.Simulation(m, p)
s.reset()
# Empty arrays to fill.
period = []
offset_list = []
# Start with offset in schedule equal to 0, offset delays when to schedule next PCL change
offset = 0
# Decrease PCL until it hits the minimum value, scheduling new pacing events
while pcl > min_pcl:
#Initialising protocol with new pacing
p.schedule(level = 1, start = offset, duration = 0.5, period = pcl, multiplier = beats_per_pace )
offset_list.append(offset)
# Next set of pacing events to be scheduled by this offset (beats per pace * pace)
offset += beats_per_pace*pcl
period.append(pcl)
pcl += step_size
# Set up simulation using this scheduled protocol
s = myokit.Simulation(m, p)
# Run the simulation with final offset value, equal to time passed for whole protocol
d = s.run(offset)
# Use ap_duration function to calculate start times and durations
start, duration = ap_duration(d, paces*beats_per_pace)
# First offset equal to zero, so remove first entry from the list
offset_list = offset_list[1:]
# Numpy array to contain final APD for each pacing cycle
final_apd = np.zeros(len(offset_list) + 1)
# Fill final_apd array
for i in range(len(offset_list)):
# Final peak of pacing cycle = peak before the first of a new pacing cycle
# Index_start = The index of the start of pacing cycle in start array
index_start = np.nonzero(np.round(start,0) >= offset_list[i])[0][0]
# index_1 -1 to get peak at the end of the previous cycle
final_apd[i] = duration[index_start - 1]
# The final peak doesn't have a peak after it, so can be indexed by the final duration recorded
final_apd[-1] = duration[-1]
pl.figure()
pl.plot(d['engine.time'], d['membrane.V'])
# Plot the restitution curve
pl.figure()
pl.plot(period, final_apd, 'x')
pl.xlabel('Period (ms)')
pl.ylabel('APD 90 (ms)')
pl.title('Dynamic Restitution Curve- Epithelial Cells (Ten-Tusscher 2006)')
pl.show()