-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsampling.toml
37 lines (26 loc) · 1.4 KB
/
sampling.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# REINVENT4 TOML input example for sampling
#
run_type = "sampling"
device = "cuda:0" # set torch device e.g. "cpu"
json_out_config = "_sampling.json" # write this TOML to JSON
[parameters]
# Uncomment one of the comment blocks below. Each generator needs a model
# file and possibly a SMILES file with seed structures.
## Reinvent: de novo sampling
#model_file = "priors/reinvent.prior"
## LibInvent: find R-groups for the given scaffolds
#model_file = "priors/libinvent.prior"
#smiles_file = "scaffolds.smi" # 1 scaffold per line with attachment points
## LinkInvent: find a linker/scaffold to link two fragments
#model_file = "priors/linkinvent.prior"
#smiles_file = "warheads.smi" # 2 warheads per line separated with '|'
## Mol2Mol: find molecules similar to the provided molecules
model_file = "priors/mol2mol_medium_similarity.prior"
smiles_file = "C:\\Users\\Rohan KumarMishra\\Desktop\\hide\\chat_pharma\\src\\smiles\\f2.smi"
sample_strategy = "beamsearch" # multinomial or beamsearch (deterministic)
temperature = 1.0 # temperature in multinomial sampling
tb_logdir = "tb_logs" # name of the TensorBoard logging directory
output_file = 'sampling.csv' # sampled SMILES and NLL in CSV format
num_smiles = 157 # number of SMILES to be sampled, 1 per input SMILES
unique_molecules = true # if true remove all duplicatesd canonicalize smiles
randomize_smiles = true # if true shuffle atoms in SMILES randomly