From 2ad877dad75ac60e77d665c6c39d9221b989f7f0 Mon Sep 17 00:00:00 2001 From: Anton Baumann Date: Thu, 2 May 2024 14:35:24 +0200 Subject: [PATCH] improve documentation --- utools/wrappers/__init__.py | 4 ++-- utools/wrappers/ensemble.py | 4 ++-- utools/wrappers/monte_carlo.py | 6 +++--- 3 files changed, 7 insertions(+), 7 deletions(-) diff --git a/utools/wrappers/__init__.py b/utools/wrappers/__init__.py index 1b74d1e..0d10b2c 100644 --- a/utools/wrappers/__init__.py +++ b/utools/wrappers/__init__.py @@ -3,7 +3,7 @@ from utools.wrappers.ensemble import Ensemble __all__ = [ - 'BaseWrapper', - 'MonteCarlo', 'Ensemble', + 'MonteCarlo', + 'BaseWrapper', ] \ No newline at end of file diff --git a/utools/wrappers/ensemble.py b/utools/wrappers/ensemble.py index 649e6c2..1daf6f8 100644 --- a/utools/wrappers/ensemble.py +++ b/utools/wrappers/ensemble.py @@ -25,7 +25,7 @@ def __init__( criterion (RegressionLoss | HeteroscedasticSoftmax): The criterion to be used for computing probabilistic outputs. """ super(Ensemble, self).__init__() - self.wrapper = BaseWrapper(models=models, criterion=criterion, monte_carlo_samples=1) + self.__wrapper = BaseWrapper(models=models, criterion=criterion, monte_carlo_samples=1) def forward(self, input: torch.Tensor) -> torch.Tensor: """ @@ -37,4 +37,4 @@ def forward(self, input: torch.Tensor) -> torch.Tensor: Returns: torch.Tensor: The ensemble prediction dictionary. """ - return self.wrapper(input) + return self.__wrapper(input) diff --git a/utools/wrappers/monte_carlo.py b/utools/wrappers/monte_carlo.py index fa549c7..11044df 100644 --- a/utools/wrappers/monte_carlo.py +++ b/utools/wrappers/monte_carlo.py @@ -26,17 +26,17 @@ def __init__( monte_carlo_samples (int): The number of samples to use for Monte Carlo simulation. """ super(MonteCarlo, self).__init__() - self.wrapper = BaseWrapper(models=[model], criterion=criterion, monte_carlo_samples=monte_carlo_samples) + self.__wrapper = BaseWrapper(models=[model], criterion=criterion, monte_carlo_samples=monte_carlo_samples) # Activate MC Dropout for the model - for model in self.wrapper.models: + for model in self.__wrapper.models: self._activate_mc_dropout(model) def forward(self, input: torch.Tensor) -> torch.Tensor: """ Computes the Monte Carlo prediction. """ - return self.wrapper(input) + return self.__wrapper(input) @staticmethod def _activate_mc_dropout(model: torch.nn.Module):