-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetection_utils.py
162 lines (120 loc) · 4.93 KB
/
detection_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
import cv2
import os
import datetime
import pdb
import matplotlib
matplotlib.use('agg') # So that we can run this on the server
import matplotlib.pyplot as plt
plt.switch_backend('agg')
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from fast_rcnn.nms_wrapper import nms
import voc
CLASSES = voc.get_label_names()
def read_detection (detection_file):
"""Parses a saved detection file."""
class_labels = []
scores = []
if not os.path.isfile(detection_file):
raise AssertionError("Detection file " + detection_file + " does not exist")
f = open(detection_file, 'r')
lines = f.readlines()
num_detections = len(lines) // 3
bboxes = np.zeros((num_detections, 4))
for i in range(num_detections):
class_label = int(lines[3*i])
class_labels.append(class_label)
score = float(lines[3*i+1])
scores.append(score)
bboxes[i, :] = [float(x) for x in lines[3*i+2].split()]
return class_labels, scores, bboxes
def begin_file_write(filename):
file_pointer = open(filename, 'w')
return file_pointer
def write_detection(file_pointer, label, score, bbox):
file_pointer.write(str(label) + "\n")
file_pointer.write(str(score) + "\n")
file_pointer.write(str(bbox[0]) + " " + str(bbox[1]) + " " + str(bbox[2]) + " " + str(bbox[3]) + "\n")
def close_file_write(file_pointer):
file_pointer.write("0")
file_pointer.close()
def vis_detections(im, class_name, dets, thresh=0.5, save_path='', box_colour = None, caption_bg_colour=None):
"""Draw detected bounding boxes."""
inds = np.where(dets[:, -1] >= thresh)[0]
if len(inds) == 0:
return
if box_colour is None:
box_colour = 'red'
if caption_bg_colour is None:
caption_bg_colour = 'blue'
im = im[:, :, (2, 1, 0)]
fig, ax = plt.subplots(figsize=(12, 12))
ax.imshow(im, aspect='equal')
for i in inds:
bbox = dets[i, :4]
score = dets[i, -1]
ax.add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor=box_colour, linewidth=3.5)
)
ax.text(bbox[0], bbox[1] - 2,
'{:s} {:.3f}'.format(class_name, score),
bbox=dict(facecolor=caption_bg_colour, alpha=0.5),
fontsize=14, color='white')
ax.set_title(('{} detections with '
'p({} | box) >= {:.1f}').format(class_name, class_name,
thresh),
fontsize=14)
plt.axis('off')
plt.tight_layout()
if not save_path:
plt.draw()
else:
plt.savefig(save_path)
def detect_single(net, im, box_output_path, visualise_window=False, visualise_output_path=None,
conf_thresh=0.7, nms_thresh=0.3, gpu=0):
"""Runs detector on an image
Args:
net: Caffe network to process the image
im: a C x W x H image
box_output_path: Path to write a plain-text file with saved detections.
visualise_window: Boolean. Visualise the detection result in a separate window.
visualise_output_path: Path to write an image with detections visualised.
Visualised result not written if this is None.
conf_thresh: Threshold to use for filtering detections
nms_thresh: Threshold to use for non-maximal suppression.
gpu: The GPU id to use.
"""
im = im.astype(np.uint8)
cfg.TEST.HAS_RPN = True
cfg.GPU_ID = gpu if gpu >= 0 else -1
scores, boxes = im_detect(net, im)
box_output_file = begin_file_write(box_output_path)
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4:8]
cls_scores = scores[:, cls_ind]
keep = np.where(cls_scores >= conf_thresh)[0]
cls_boxes = cls_boxes[keep, :]
cls_scores = cls_scores[keep]
dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis]))
dets = dets.astype(np.float32)
keep = nms(dets, nms_thresh)
dets = dets[keep, :]
for i in range(dets.shape[0]):
write_detection(box_output_file, cls_ind, dets[i][4], dets[i][0:4])
if (visualise_window or visualise_output_path):
colour = voc.get_colour_map()
idx = cls_ind
colour = colour[3*idx:3*idx+3]
colour = [ float(x) / 256.0 for x in colour]
vis_detections(im, cls, dets, conf_thresh, visualise_output_path,
box_colour=colour, caption_bg_colour=colour)
if visualise_window:
plt.show()
if visualise_window or visualise_output_path:
plt.close('all')
close_file_write(box_output_file)