-
Notifications
You must be signed in to change notification settings - Fork 39
/
exprs.go
1039 lines (892 loc) · 29.3 KB
/
exprs.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
package iceberg
import (
"fmt"
"reflect"
"github.com/google/uuid"
)
//go:generate stringer -type=Operation -linecomment
// Operation is an enum used for constants to define what operation a given
// expression or predicate is going to execute.
type Operation int
const (
// do not change the order of these enum constants.
// they are grouped for quick validation of operation type by
// using <= and >= of the first/last operation in a group
OpTrue Operation = iota // True
OpFalse // False
// unary ops
OpIsNull // IsNull
OpNotNull // NotNull
OpIsNan // IsNaN
OpNotNan // NotNaN
// literal ops
OpLT // LessThan
OpLTEQ // LessThanEqual
OpGT // GreaterThan
OpGTEQ // GreaterThanEqual
OpEQ // Equal
OpNEQ // NotEqual
OpStartsWith // StartsWith
OpNotStartsWith // NotStartsWith
// set ops
OpIn // In
OpNotIn // NotIn
// boolean ops
OpNot // Not
OpAnd // And
OpOr // Or
)
// Negate returns the inverse operation for a given op
func (op Operation) Negate() Operation {
switch op {
case OpIsNull:
return OpNotNull
case OpNotNull:
return OpIsNull
case OpIsNan:
return OpNotNan
case OpNotNan:
return OpIsNan
case OpLT:
return OpGTEQ
case OpLTEQ:
return OpGT
case OpGT:
return OpLTEQ
case OpGTEQ:
return OpLT
case OpEQ:
return OpNEQ
case OpNEQ:
return OpEQ
case OpIn:
return OpNotIn
case OpNotIn:
return OpIn
case OpStartsWith:
return OpNotStartsWith
case OpNotStartsWith:
return OpStartsWith
default:
panic("no negation for operation " + op.String())
}
}
// FlipLR returns the correct operation to use if the left and right operands
// are flipped.
func (op Operation) FlipLR() Operation {
switch op {
case OpLT:
return OpGT
case OpLTEQ:
return OpGTEQ
case OpGT:
return OpLT
case OpGTEQ:
return OpLTEQ
case OpAnd:
return OpAnd
case OpOr:
return OpOr
default:
panic("no left-right flip for operation: " + op.String())
}
}
// BooleanExpression represents a full expression which will evaluate to a
// boolean value such as GreaterThan or StartsWith, etc.
type BooleanExpression interface {
fmt.Stringer
Op() Operation
Negate() BooleanExpression
Equals(BooleanExpression) bool
}
// AlwaysTrue is the boolean expression "True"
type AlwaysTrue struct{}
func (AlwaysTrue) String() string { return "AlwaysTrue()" }
func (AlwaysTrue) Op() Operation { return OpTrue }
func (AlwaysTrue) Negate() BooleanExpression { return AlwaysFalse{} }
func (AlwaysTrue) Equals(other BooleanExpression) bool {
_, ok := other.(AlwaysTrue)
return ok
}
// AlwaysFalse is the boolean expression "False"
type AlwaysFalse struct{}
func (AlwaysFalse) String() string { return "AlwaysFalse()" }
func (AlwaysFalse) Op() Operation { return OpFalse }
func (AlwaysFalse) Negate() BooleanExpression { return AlwaysTrue{} }
func (AlwaysFalse) Equals(other BooleanExpression) bool {
_, ok := other.(AlwaysFalse)
return ok
}
type NotExpr struct {
child BooleanExpression
}
// NewNot creates a BooleanExpression representing a "Not" operation on the given
// argument. It will optimize slightly though:
//
// If the argument is AlwaysTrue or AlwaysFalse, the appropriate inverse expression
// will be returned directly. If the argument is itself a NotExpr, then the child
// will be returned rather than NotExpr(NotExpr(child)).
func NewNot(child BooleanExpression) BooleanExpression {
if child == nil {
panic(fmt.Errorf("%w: cannot create NotExpr with nil child",
ErrInvalidArgument))
}
switch t := child.(type) {
case NotExpr:
return t.child
case AlwaysTrue:
return AlwaysFalse{}
case AlwaysFalse:
return AlwaysTrue{}
}
return NotExpr{child: child}
}
func (n NotExpr) String() string { return "Not(child=" + n.child.String() + ")" }
func (NotExpr) Op() Operation { return OpNot }
func (n NotExpr) Negate() BooleanExpression { return n.child }
func (n NotExpr) Equals(other BooleanExpression) bool {
rhs, ok := other.(NotExpr)
if !ok {
return false
}
return n.child.Equals(rhs.child)
}
type AndExpr struct {
left, right BooleanExpression
}
func newAnd(left, right BooleanExpression) BooleanExpression {
if left == nil || right == nil {
panic(fmt.Errorf("%w: cannot construct AndExpr with nil arguments",
ErrInvalidArgument))
}
switch {
case left == AlwaysFalse{} || right == AlwaysFalse{}:
return AlwaysFalse{}
case left == AlwaysTrue{}:
return right
case right == AlwaysTrue{}:
return left
}
return AndExpr{left: left, right: right}
}
// NewAnd will construct a new AndExpr, allowing the caller to provide potentially
// more than just two arguments which will be folded to create an appropriate expression
// tree. i.e. NewAnd(a, b, c, d) becomes AndExpr(a, AndExpr(b, AndExpr(c, d)))
//
// Slight optimizations are performed on creation if either argument is AlwaysFalse
// or AlwaysTrue by performing reductions. If any argument is AlwaysFalse, then everything
// will get folded to a return of AlwaysFalse. If an argument is AlwaysTrue, then the other
// argument will be returned directly rather than creating an AndExpr.
//
// Will panic if any argument is nil
func NewAnd(left, right BooleanExpression, addl ...BooleanExpression) BooleanExpression {
folded := newAnd(left, right)
for _, a := range addl {
folded = newAnd(folded, a)
}
return folded
}
func (a AndExpr) String() string {
return "And(left=" + a.left.String() + ", right=" + a.right.String() + ")"
}
func (AndExpr) Op() Operation { return OpAnd }
func (a AndExpr) Equals(other BooleanExpression) bool {
rhs, ok := other.(AndExpr)
if !ok {
return false
}
return (a.left.Equals(rhs.left) && a.right.Equals(rhs.right)) ||
(a.left.Equals(rhs.right) && a.right.Equals(rhs.left))
}
func (a AndExpr) Negate() BooleanExpression {
return NewOr(a.left.Negate(), a.right.Negate())
}
type OrExpr struct {
left, right BooleanExpression
}
func newOr(left, right BooleanExpression) BooleanExpression {
if left == nil || right == nil {
panic(fmt.Errorf("%w: cannot construct OrExpr with nil arguments",
ErrInvalidArgument))
}
switch {
case left == AlwaysTrue{} || right == AlwaysTrue{}:
return AlwaysTrue{}
case left == AlwaysFalse{}:
return right
case right == AlwaysFalse{}:
return left
}
return OrExpr{left: left, right: right}
}
// NewOr will construct a new OrExpr, allowing the caller to provide potentially
// more than just two arguments which will be folded to create an appropriate expression
// tree. i.e. NewOr(a, b, c, d) becomes OrExpr(a, OrExpr(b, OrExpr(c, d)))
//
// Slight optimizations are performed on creation if either argument is AlwaysFalse
// or AlwaysTrue by performing reductions. If any argument is AlwaysTrue, then everything
// will get folded to a return of AlwaysTrue. If an argument is AlwaysFalse, then the other
// argument will be returned directly rather than creating an OrExpr.
//
// Will panic if any argument is nil
func NewOr(left, right BooleanExpression, addl ...BooleanExpression) BooleanExpression {
folded := newOr(left, right)
for _, a := range addl {
folded = newOr(folded, a)
}
return folded
}
func (o OrExpr) String() string {
return "Or(left=" + o.left.String() + ", right=" + o.right.String() + ")"
}
func (OrExpr) Op() Operation { return OpOr }
func (o OrExpr) Equals(other BooleanExpression) bool {
rhs, ok := other.(OrExpr)
if !ok {
return false
}
return (o.left.Equals(rhs.left) && o.right.Equals(rhs.right)) ||
(o.left.Equals(rhs.right) && o.right.Equals(rhs.left))
}
func (o OrExpr) Negate() BooleanExpression {
return NewAnd(o.left.Negate(), o.right.Negate())
}
// A Term is a simple expression that evaluates to a value
type Term interface {
fmt.Stringer
// requiring this method ensures that only types we define can be used
// as a term.
isTerm()
}
// UnboundTerm is an expression that evaluates to a value that isn't yet bound
// to a schema, thus it isn't yet known what the type will be.
type UnboundTerm interface {
Term
Equals(UnboundTerm) bool
Bind(schema *Schema, caseSensitive bool) (BoundTerm, error)
}
// BoundTerm is a simple expression (typically a reference) that evaluates to a
// value and has been bound to a schema.
type BoundTerm interface {
Term
Equals(BoundTerm) bool
Ref() BoundReference
Type() Type
evalToLiteral(structLike) Optional[Literal]
evalIsNull(structLike) bool
}
// unbound is a generic interface representing something that is not yet bound
// to a particular type.
type unbound[B any] interface {
Bind(schema *Schema, caseSensitive bool) (B, error)
}
// An UnboundPredicate represents a boolean predicate expression which has not
// yet been bound to a schema. Binding it will produce a BooleanExpression.
//
// BooleanExpression is used for the binding result because we may optimize and
// return AlwaysTrue / AlwaysFalse in some scenarios during binding which are
// not considered to be "Bound" as they do not have a bound Term or Reference.
type UnboundPredicate interface {
BooleanExpression
unbound[BooleanExpression]
Term() UnboundTerm
}
// BoundPredicate is a boolean predicate expression which has been bound to a schema.
// The underlying reference and term can be retrieved from it.
type BoundPredicate interface {
BooleanExpression
Ref() BoundReference
Term() BoundTerm
}
// Reference is a field name not yet bound to a particular field in a schema
type Reference string
func (r Reference) String() string {
return "Reference(name='" + string(r) + "')"
}
func (Reference) isTerm() {}
func (r Reference) Equals(other UnboundTerm) bool {
rhs, ok := other.(Reference)
if !ok {
return false
}
return r == rhs
}
func (r Reference) Bind(s *Schema, caseSensitive bool) (BoundTerm, error) {
var (
field NestedField
found bool
)
if caseSensitive {
field, found = s.FindFieldByName(string(r))
} else {
field, found = s.FindFieldByNameCaseInsensitive(string(r))
}
if !found {
return nil, fmt.Errorf("%w: could not bind reference '%s', caseSensitive=%t",
ErrInvalidSchema, string(r), caseSensitive)
}
acc, ok := s.accessorForField(field.ID)
if !ok {
return nil, ErrInvalidSchema
}
return createBoundRef(field, acc), nil
}
// BoundReference is a named reference that has been bound to a particular field
// in a given schema.
type BoundReference interface {
BoundTerm
Field() NestedField
Pos() int
PosPath() []int
}
type boundRef[T LiteralType] struct {
field NestedField
acc accessor
}
func createBoundRef(field NestedField, acc accessor) BoundReference {
switch field.Type.(type) {
case BooleanType:
return &boundRef[bool]{field: field, acc: acc}
case Int32Type:
return &boundRef[int32]{field: field, acc: acc}
case Int64Type:
return &boundRef[int64]{field: field, acc: acc}
case Float32Type:
return &boundRef[float32]{field: field, acc: acc}
case Float64Type:
return &boundRef[float64]{field: field, acc: acc}
case DateType:
return &boundRef[Date]{field: field, acc: acc}
case TimeType:
return &boundRef[Time]{field: field, acc: acc}
case TimestampType, TimestampTzType:
return &boundRef[Timestamp]{field: field, acc: acc}
case StringType:
return &boundRef[string]{field: field, acc: acc}
case FixedType, BinaryType:
return &boundRef[[]byte]{field: field, acc: acc}
case DecimalType:
return &boundRef[Decimal]{field: field, acc: acc}
case UUIDType:
return &boundRef[uuid.UUID]{field: field, acc: acc}
}
panic("unhandled bound reference type: " + field.Type.String())
}
func (b *boundRef[T]) Pos() int { return b.acc.pos }
func (b *boundRef[T]) PosPath() []int {
out, inner := []int{b.acc.pos}, &b.acc
for inner.inner != nil {
inner = inner.inner
out = append(out, inner.pos)
}
return out
}
func (*boundRef[T]) isTerm() {}
func (b *boundRef[T]) String() string {
return fmt.Sprintf("BoundReference(field=%s, accessor=%s)", b.field, &b.acc)
}
func (b *boundRef[T]) Equals(other BoundTerm) bool {
rhs, ok := other.(*boundRef[T])
if !ok {
return false
}
return b.field.Equals(rhs.field)
}
func (b *boundRef[T]) Ref() BoundReference { return b }
func (b *boundRef[T]) Field() NestedField { return b.field }
func (b *boundRef[T]) Type() Type { return b.field.Type }
func (b *boundRef[T]) eval(st structLike) Optional[T] {
switch v := b.acc.Get(st).(type) {
case nil:
return Optional[T]{}
case T:
return Optional[T]{Valid: true, Val: v}
default:
var z T
typ, val := reflect.TypeOf(z), reflect.ValueOf(v)
if !val.CanConvert(typ) {
panic(fmt.Errorf("%w: cannot convert value '%+v' to expected type %s",
ErrInvalidSchema, val.Interface(), typ.String()))
}
return Optional[T]{
Valid: true,
Val: val.Convert(typ).Interface().(T),
}
}
}
func (b *boundRef[T]) evalToLiteral(st structLike) Optional[Literal] {
v := b.eval(st)
if !v.Valid {
return Optional[Literal]{}
}
lit := NewLiteral[T](v.Val)
if !lit.Type().Equals(b.field.Type) {
lit, _ = lit.To(b.field.Type)
}
return Optional[Literal]{Val: lit, Valid: true}
}
func (b *boundRef[T]) evalIsNull(st structLike) bool {
v := b.eval(st)
return !v.Valid
}
// UnaryPredicate creates and returns an unbound predicate for the provided unary operation.
// Will panic if op is not a unary operation.
func UnaryPredicate(op Operation, t UnboundTerm) UnboundPredicate {
if op < OpIsNull || op > OpNotNan {
panic(fmt.Errorf("%w: invalid operation for unary predicate: %s",
ErrInvalidArgument, op))
}
if t == nil {
panic(fmt.Errorf("%w: cannot create unary predicate with nil term",
ErrInvalidArgument))
}
return &unboundUnaryPredicate{op: op, term: t}
}
type unboundUnaryPredicate struct {
op Operation
term UnboundTerm
}
func (up *unboundUnaryPredicate) String() string {
return fmt.Sprintf("%s(term=%s)", up.op, up.term)
}
func (up *unboundUnaryPredicate) Equals(other BooleanExpression) bool {
rhs, ok := other.(*unboundUnaryPredicate)
if !ok {
return false
}
return up.op == rhs.op && up.term.Equals(rhs.term)
}
func (up *unboundUnaryPredicate) Op() Operation { return up.op }
func (up *unboundUnaryPredicate) Negate() BooleanExpression {
return &unboundUnaryPredicate{op: up.op.Negate(), term: up.term}
}
func (up *unboundUnaryPredicate) Term() UnboundTerm { return up.term }
func (up *unboundUnaryPredicate) Bind(schema *Schema, caseSensitive bool) (BooleanExpression, error) {
bound, err := up.term.Bind(schema, caseSensitive)
if err != nil {
return nil, err
}
// fast case optimizations
switch up.op {
case OpIsNull:
if bound.Ref().Field().Required && !schema.FieldHasOptionalParent(bound.Ref().Field().ID) {
return AlwaysFalse{}, nil
}
case OpNotNull:
if bound.Ref().Field().Required && !schema.FieldHasOptionalParent(bound.Ref().Field().ID) {
return AlwaysTrue{}, nil
}
case OpIsNan:
if !bound.Type().Equals(PrimitiveTypes.Float32) && !bound.Type().Equals(PrimitiveTypes.Float64) {
return AlwaysFalse{}, nil
}
case OpNotNan:
if !bound.Type().Equals(PrimitiveTypes.Float32) && !bound.Type().Equals(PrimitiveTypes.Float64) {
return AlwaysTrue{}, nil
}
}
return createBoundUnaryPredicate(up.op, bound), nil
}
// BoundUnaryPredicate is a bound predicate expression that has no arguments
type BoundUnaryPredicate interface {
BoundPredicate
AsUnbound(Reference) UnboundPredicate
}
type bound[T LiteralType] interface {
BoundTerm
eval(structLike) Optional[T]
}
func newBoundUnaryPred[T LiteralType](op Operation, term BoundTerm) BoundUnaryPredicate {
return &boundUnaryPredicate[T]{op: op, term: term.(bound[T])}
}
func createBoundUnaryPredicate(op Operation, term BoundTerm) BoundUnaryPredicate {
switch term.Type().(type) {
case BooleanType:
return newBoundUnaryPred[bool](op, term)
case Int32Type:
return newBoundUnaryPred[int32](op, term)
case Int64Type:
return newBoundUnaryPred[int64](op, term)
case Float32Type:
return newBoundUnaryPred[float32](op, term)
case Float64Type:
return newBoundUnaryPred[float64](op, term)
case DateType:
return newBoundUnaryPred[Date](op, term)
case TimeType:
return newBoundUnaryPred[Time](op, term)
case TimestampType, TimestampTzType:
return newBoundUnaryPred[Timestamp](op, term)
case StringType:
return newBoundUnaryPred[string](op, term)
case FixedType, BinaryType:
return newBoundUnaryPred[[]byte](op, term)
case DecimalType:
return newBoundUnaryPred[Decimal](op, term)
case UUIDType:
return newBoundUnaryPred[uuid.UUID](op, term)
}
panic("unhandled bound reference type: " + term.Type().String())
}
type boundUnaryPredicate[T LiteralType] struct {
op Operation
term bound[T]
}
func (bp *boundUnaryPredicate[T]) AsUnbound(r Reference) UnboundPredicate {
return &unboundUnaryPredicate{op: bp.op, term: r}
}
func (bp *boundUnaryPredicate[T]) Equals(other BooleanExpression) bool {
rhs, ok := other.(*boundUnaryPredicate[T])
if !ok {
return false
}
return bp.op == rhs.op && bp.term.Equals(rhs.term)
}
func (bp *boundUnaryPredicate[T]) Op() Operation { return bp.op }
func (bp *boundUnaryPredicate[T]) Negate() BooleanExpression {
return &boundUnaryPredicate[T]{op: bp.op.Negate(), term: bp.term}
}
func (bp *boundUnaryPredicate[T]) Term() BoundTerm { return bp.term }
func (bp *boundUnaryPredicate[T]) Ref() BoundReference { return bp.term.Ref() }
func (bp *boundUnaryPredicate[T]) String() string {
return fmt.Sprintf("Bound%s(term=%s)", bp.op, bp.term)
}
// LiteralPredicate constructs an unbound predicate for an operation that requires
// a single literal argument, such as LessThan or StartsWith.
//
// Panics if the operation provided is not a valid Literal operation,
// if the term is nil or if the literal is nil.
func LiteralPredicate(op Operation, t UnboundTerm, lit Literal) UnboundPredicate {
switch {
case op < OpLT || op > OpNotStartsWith:
panic(fmt.Errorf("%w: invalid operation for LiteralPredicate: %s",
ErrInvalidArgument, op))
case t == nil:
panic(fmt.Errorf("%w: cannot create literal predicate with nil term",
ErrInvalidArgument))
case lit == nil:
panic(fmt.Errorf("%w: cannot create literal predicate with nil literal",
ErrInvalidArgument))
}
return &unboundLiteralPredicate{op: op, term: t, lit: lit}
}
type unboundLiteralPredicate struct {
op Operation
term UnboundTerm
lit Literal
}
func (ul *unboundLiteralPredicate) String() string {
return fmt.Sprintf("%s(term=%s, literal=%s)", ul.op, ul.term, ul.lit)
}
func (ul *unboundLiteralPredicate) Equals(other BooleanExpression) bool {
rhs, ok := other.(*unboundLiteralPredicate)
if !ok {
return false
}
return ul.op == rhs.op && ul.term.Equals(rhs.term) && ul.lit.Equals(rhs.lit)
}
func (ul *unboundLiteralPredicate) Op() Operation { return ul.op }
func (ul *unboundLiteralPredicate) Negate() BooleanExpression {
return &unboundLiteralPredicate{op: ul.op.Negate(), term: ul.term, lit: ul.lit}
}
func (ul *unboundLiteralPredicate) Term() UnboundTerm { return ul.term }
func (ul *unboundLiteralPredicate) Bind(schema *Schema, caseSensitive bool) (BooleanExpression, error) {
bound, err := ul.term.Bind(schema, caseSensitive)
if err != nil {
return nil, err
}
if (ul.op == OpStartsWith || ul.op == OpNotStartsWith) &&
!(bound.Type().Equals(PrimitiveTypes.String) || bound.Type().Equals(PrimitiveTypes.Binary)) {
return nil, fmt.Errorf("%w: StartsWith and NotStartsWith must bind to String type, not %s",
ErrType, bound.Type())
}
lit, err := ul.lit.To(bound.Type())
if err != nil {
return nil, err
}
switch lit.(type) {
case AboveMaxLiteral:
switch ul.op {
case OpLT, OpLTEQ, OpNEQ:
return AlwaysTrue{}, nil
case OpGT, OpGTEQ, OpEQ:
return AlwaysFalse{}, nil
}
case BelowMinLiteral:
switch ul.op {
case OpLT, OpLTEQ, OpEQ:
return AlwaysFalse{}, nil
case OpGT, OpGTEQ, OpNEQ:
return AlwaysTrue{}, nil
}
}
return createBoundLiteralPredicate(ul.op, bound, lit)
}
// BoundLiteralPredicate represents a bound boolean expression that utilizes a single
// literal as an argument, such as Equals or StartsWith.
type BoundLiteralPredicate interface {
BoundPredicate
Literal() Literal
AsUnbound(Reference, Literal) UnboundPredicate
}
func newBoundLiteralPredicate[T LiteralType](op Operation, term BoundTerm, lit Literal) BoundPredicate {
return &boundLiteralPredicate[T]{op: op, term: term.(bound[T]),
lit: lit.(TypedLiteral[T])}
}
func createBoundLiteralPredicate(op Operation, term BoundTerm, lit Literal) (BoundPredicate, error) {
finalLit, err := lit.To(term.Type())
if err != nil {
return nil, err
}
switch term.Type().(type) {
case BooleanType:
return newBoundLiteralPredicate[bool](op, term, finalLit), nil
case Int32Type:
return newBoundLiteralPredicate[int32](op, term, finalLit), nil
case Int64Type:
return newBoundLiteralPredicate[int64](op, term, finalLit), nil
case Float32Type:
return newBoundLiteralPredicate[float32](op, term, finalLit), nil
case Float64Type:
return newBoundLiteralPredicate[float64](op, term, finalLit), nil
case DateType:
return newBoundLiteralPredicate[Date](op, term, finalLit), nil
case TimeType:
return newBoundLiteralPredicate[Time](op, term, finalLit), nil
case TimestampType, TimestampTzType:
return newBoundLiteralPredicate[Timestamp](op, term, finalLit), nil
case StringType:
return newBoundLiteralPredicate[string](op, term, finalLit), nil
case FixedType, BinaryType:
return newBoundLiteralPredicate[[]byte](op, term, finalLit), nil
case DecimalType:
return newBoundLiteralPredicate[Decimal](op, term, finalLit), nil
case UUIDType:
return newBoundLiteralPredicate[uuid.UUID](op, term, finalLit), nil
}
return nil, fmt.Errorf("%w: could not create bound literal predicate for term type %s",
ErrInvalidArgument, term.Type())
}
type boundLiteralPredicate[T LiteralType] struct {
op Operation
term bound[T]
lit TypedLiteral[T]
}
func (blp *boundLiteralPredicate[T]) Equals(other BooleanExpression) bool {
rhs, ok := other.(*boundLiteralPredicate[T])
if !ok {
return false
}
return blp.op == rhs.op && blp.term.Equals(rhs.term) && blp.lit.Equals(rhs.lit)
}
func (blp *boundLiteralPredicate[T]) Op() Operation { return blp.op }
func (blp *boundLiteralPredicate[T]) Negate() BooleanExpression {
return &boundLiteralPredicate[T]{op: blp.op.Negate(), term: blp.term, lit: blp.lit}
}
func (blp *boundLiteralPredicate[T]) Term() BoundTerm { return blp.term }
func (blp *boundLiteralPredicate[T]) Ref() BoundReference { return blp.term.Ref() }
func (blp *boundLiteralPredicate[T]) String() string {
return fmt.Sprintf("Bound%s(term=%s, literal=%s)", blp.op, blp.term, blp.lit)
}
func (blp *boundLiteralPredicate[T]) Literal() Literal { return blp.lit }
func (blp *boundLiteralPredicate[T]) AsUnbound(r Reference, l Literal) UnboundPredicate {
return &unboundLiteralPredicate{op: blp.op, term: r, lit: l}
}
// SetPredicate creates a boolean expression representing a predicate that uses a set
// of literals as the argument, like In or NotIn. Duplicate literals will be folded
// into a set, only maintaining the unique literals.
//
// Will panic if op is not a valid Set operation
func SetPredicate(op Operation, t UnboundTerm, lits []Literal) BooleanExpression {
if op < OpIn || op > OpNotIn {
panic(fmt.Errorf("%w: invalid operation for SetPredicate: %s",
ErrInvalidArgument, op))
}
if t == nil {
panic(fmt.Errorf("%w: cannot create set predicate with nil term",
ErrInvalidArgument))
}
switch len(lits) {
case 0:
if op == OpIn {
return AlwaysFalse{}
} else if op == OpNotIn {
return AlwaysTrue{}
}
case 1:
if op == OpIn {
return LiteralPredicate(OpEQ, t, lits[0])
} else if op == OpNotIn {
return LiteralPredicate(OpNEQ, t, lits[0])
}
}
return &unboundSetPredicate{op: op, term: t, lits: newLiteralSet(lits...)}
}
type unboundSetPredicate struct {
op Operation
term UnboundTerm
lits Set[Literal]
}
func (usp *unboundSetPredicate) String() string {
return fmt.Sprintf("%s(term=%s, {%v})", usp.op, usp.term, usp.lits.Members())
}
func (usp *unboundSetPredicate) Equals(other BooleanExpression) bool {
rhs, ok := other.(*unboundSetPredicate)
if !ok {
return false
}
return usp.op == rhs.op && usp.term.Equals(rhs.term) &&
usp.lits.Equals(rhs.lits)
}
func (usp *unboundSetPredicate) Op() Operation { return usp.op }
func (usp *unboundSetPredicate) Negate() BooleanExpression {
return &unboundSetPredicate{op: usp.op.Negate(), term: usp.term, lits: usp.lits}
}
func (usp *unboundSetPredicate) Term() UnboundTerm { return usp.term }
func (usp *unboundSetPredicate) Bind(schema *Schema, caseSensitive bool) (BooleanExpression, error) {
bound, err := usp.term.Bind(schema, caseSensitive)
if err != nil {
return nil, err
}
return createBoundSetPredicate(usp.op, bound, usp.lits)
}
// BoundSetPredicate is a bound expression that utilizes a set of literals such as In or NotIn
type BoundSetPredicate interface {
BoundPredicate
Literals() Set[Literal]
AsUnbound(Reference, []Literal) UnboundPredicate
}
func createBoundSetPredicate(op Operation, term BoundTerm, lits Set[Literal]) (BooleanExpression, error) {
boundType := term.Type()
typedSet := newLiteralSet()
for _, v := range lits.Members() {
casted, err := v.To(boundType)
if err != nil {
return nil, err
}
typedSet.Add(casted)
}
switch typedSet.Len() {
case 0:
if op == OpIn {
return AlwaysFalse{}, nil
} else if op == OpNotIn {
return AlwaysTrue{}, nil
}
case 1:
if op == OpIn {
return createBoundLiteralPredicate(OpEQ, term, typedSet.Members()[0])
} else if op == OpNotIn {
return createBoundLiteralPredicate(OpNEQ, term, typedSet.Members()[0])
}
}
switch term.Type().(type) {
case BooleanType:
return newBoundSetPredicate[bool](op, term, typedSet), nil
case Int32Type:
return newBoundSetPredicate[int32](op, term, typedSet), nil
case Int64Type:
return newBoundSetPredicate[int64](op, term, typedSet), nil
case Float32Type:
return newBoundSetPredicate[float32](op, term, typedSet), nil
case Float64Type:
return newBoundSetPredicate[float64](op, term, typedSet), nil
case DateType:
return newBoundSetPredicate[Date](op, term, typedSet), nil
case TimeType:
return newBoundSetPredicate[Time](op, term, typedSet), nil
case TimestampType, TimestampTzType:
return newBoundSetPredicate[Timestamp](op, term, typedSet), nil
case StringType:
return newBoundSetPredicate[string](op, term, typedSet), nil
case BinaryType, FixedType:
return newBoundSetPredicate[[]byte](op, term, typedSet), nil
case DecimalType:
return newBoundSetPredicate[Decimal](op, term, typedSet), nil
case UUIDType:
return newBoundSetPredicate[uuid.UUID](op, term, typedSet), nil
}
return nil, fmt.Errorf("%w: invalid bound type for set predicate - %s",
ErrType, term.Type())
}
func newBoundSetPredicate[T LiteralType](op Operation, term BoundTerm, lits Set[Literal]) *boundSetPredicate[T] {
return &boundSetPredicate[T]{op: op, term: term.(bound[T]), lits: lits}
}
type boundSetPredicate[T LiteralType] struct {
op Operation
term bound[T]
lits Set[Literal]
}
func (bsp *boundSetPredicate[T]) Equals(other BooleanExpression) bool {
rhs, ok := other.(*boundSetPredicate[T])
if !ok {
return false
}
return bsp.op == rhs.op && bsp.term.Equals(rhs.term) &&
bsp.lits.Equals(rhs.lits)
}
func (bsp *boundSetPredicate[T]) Op() Operation { return bsp.op }
func (bsp *boundSetPredicate[T]) Negate() BooleanExpression {
return &boundSetPredicate[T]{op: bsp.op.Negate(), term: bsp.term,
lits: bsp.lits}
}
func (bsp *boundSetPredicate[T]) Term() BoundTerm { return bsp.term }
func (bsp *boundSetPredicate[T]) Ref() BoundReference { return bsp.term.Ref() }
func (bsp *boundSetPredicate[T]) String() string {
return fmt.Sprintf("Bound%s(term=%s, {%v})", bsp.op, bsp.term, bsp.lits.Members())
}
func (bsp *boundSetPredicate[T]) AsUnbound(r Reference, lits []Literal) UnboundPredicate {
litSet := newLiteralSet(lits...)
if litSet.Len() == 1 {
switch bsp.op {
case OpIn:
return LiteralPredicate(OpEQ, r, lits[0])
case OpNotIn:
return LiteralPredicate(OpNEQ, r, lits[0])
}