-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathutils.py
711 lines (555 loc) · 26.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
import os, torch, cv2, re
import numpy as np
from PIL import Image
import torch.nn.functional as F
import torchvision.transforms as T
from scipy.spatial.transform import Rotation as R
# Misc
img2mse = lambda x, y : torch.mean((x - y) ** 2)
mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
mse2psnr2 = lambda x : -10. * np.log(x) / np.log(10.)
def get_psnr(imgs_pred, imgs_gt):
psnrs = []
for (img,tar) in zip(imgs_pred,imgs_gt):
psnrs.append(mse2psnr2(np.mean((img - tar.cpu().numpy())**2)))
return np.array(psnrs)
def init_log(log, keys):
for key in keys:
log[key] = torch.tensor([0.0], dtype=float)
return log
def visualize_depth_numpy(depth, minmax=None, cmap=cv2.COLORMAP_JET):
"""
depth: (H, W)
"""
x = np.nan_to_num(depth) # change nan to 0
if minmax is None:
mi = np.min(x[x>0]) # get minimum positive depth (ignore background)
ma = np.max(x)
else:
mi,ma = minmax
x = (x-mi)/(ma-mi+1e-8) # normalize to 0~1
x = (255*x).astype(np.uint8)
x_ = cv2.applyColorMap(x, cmap)
return x_, [mi,ma]
def visualize_depth(depth, minmax=None, cmap=cv2.COLORMAP_JET):
"""
depth: (H, W)
"""
if type(depth) is not np.ndarray:
depth = depth.cpu().numpy()
x = np.nan_to_num(depth) # change nan to 0
if minmax is None:
mi = np.min(x[x>0]) # get minimum positive depth (ignore background)
ma = np.max(x)
else:
mi,ma = minmax
x = (x-mi)/(ma-mi+1e-8) # normalize to 0~1
x = (255*x).astype(np.uint8)
x_ = Image.fromarray(cv2.applyColorMap(x, cmap))
x_ = T.ToTensor()(x_) # (3, H, W)
return x_, [mi,ma]
def abs_error_numpy(depth_pred, depth_gt, mask):
depth_pred, depth_gt = depth_pred[mask], depth_gt[mask]
return np.abs(depth_pred - depth_gt)
def abs_error(depth_pred, depth_gt, mask):
depth_pred, depth_gt = depth_pred[mask], depth_gt[mask]
err = depth_pred - depth_gt
return np.abs(err) if type(depth_pred) is np.ndarray else err.abs()
def acc_threshold(depth_pred, depth_gt, mask, threshold):
"""
computes the percentage of pixels whose depth error is less than @threshold
"""
errors = abs_error(depth_pred, depth_gt, mask)
acc_mask = errors < threshold
return acc_mask.astype('float') if type(depth_pred) is np.ndarray else acc_mask.float()
# Ray helpers
def get_rays_mvs(H, W, intrinsic, c2w, N=1024, isRandom=True, is_precrop_iters=False, chunk=-1, idx=-1):
device = c2w.device
if isRandom:
if is_precrop_iters and torch.rand((1,)) > 0.3:
xs, ys = torch.randint(W//6, W-W//6, (N,)).float().to(device), torch.randint(H//6, H-H//6, (N,)).float().to(device)
else:
xs, ys = torch.randint(0,W,(N,)).float().to(device), torch.randint(0,H,(N,)).float().to(device)
else:
ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H), torch.linspace(0, W - 1, W)) # pytorch's meshgrid has indexing='ij'
ys, xs = ys.reshape(-1), xs.reshape(-1)
if chunk>0:
ys, xs = ys[idx*chunk:(idx+1)*chunk], xs[idx*chunk:(idx+1)*chunk]
ys, xs = ys.to(device), xs.to(device)
dirs = torch.stack([(xs-intrinsic[0,2])/intrinsic[0,0], (ys-intrinsic[1,2])/intrinsic[1,1], torch.ones_like(xs)], -1) # use 1 instead of -1
rays_d = dirs @ c2w[:3,:3].t() # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3,-1].clone()
pixel_coordinates = torch.stack((ys,xs)) # row col
return rays_o, rays_d, pixel_coordinates
def get_ndc_coordinate(w2c_ref, intrinsic_ref, point_samples, inv_scale, near=2, far=6, pad=0, lindisp=False):
'''
point_samples [N_rays N_sample 3]
'''
N_rays, N_samples = point_samples.shape[:2]
point_samples = point_samples.reshape(-1, 3)
# wrap to ref view
if w2c_ref is not None:
R = w2c_ref[:3, :3] # (3, 3)
T = w2c_ref[:3, 3:] # (3, 1)
point_samples = torch.matmul(point_samples, R.t()) + T.reshape(1,3)
if intrinsic_ref is not None:
# using projection
point_samples_pixel = point_samples @ intrinsic_ref.t()
point_samples_pixel[:,:2] = (point_samples_pixel[:,:2] / point_samples_pixel[:,-1:] + 0.0) / inv_scale.reshape(1,2) # normalize to 0~1
if not lindisp:
point_samples_pixel[:,2] = (point_samples_pixel[:,2] - near) / (far - near) # normalize to 0~1
else:
point_samples_pixel[:,2] = (1.0/point_samples_pixel[:,2]-1.0/near)/(1.0/far - 1.0/near)
else:
# using bounding box
near, far = near.view(1,3), far.view(1,3)
point_samples_pixel = (point_samples - near) / (far - near) # normalize to 0~1
del point_samples
if pad>0:
W_feat, H_feat = (inv_scale+1)/4.0
point_samples_pixel[:,1] = point_samples_pixel[:,1] * H_feat / (H_feat + pad * 2) + pad / (H_feat + pad * 2)
point_samples_pixel[:,0] = point_samples_pixel[:,0] * W_feat / (W_feat + pad * 2) + pad / (W_feat + pad * 2)
point_samples_pixel = point_samples_pixel.view(N_rays, N_samples, 3)
return point_samples_pixel
def build_rays(imgs, depths, pose_ref, w2cs, c2ws, intrinsics, near_fars, N_rays, N_samples, pad=0, is_precrop_iters=False, ref_idx=0, importanceSampling=False, with_depth=False, is_volume=False):
'''
Args:
imgs: [N V C H W]
depths: [N V H W]
poses: w2c c2w intrinsic [N V 4 4] [B V levels 3 3)]
init_depth_min: [B D H W]
depth_interval:
N_rays: int
N_samples: same as D int
level: int 0 == smalest
near_fars: [B D 2]
Returns:
[3 N_rays N_samples]
'''
device = imgs.device
N, V, C, H, W = imgs.shape
w2c_ref, intrinsic_ref = pose_ref['w2cs'][ref_idx], pose_ref['intrinsics'][ref_idx] # assume camera 0 is reference
inv_scale = torch.tensor([W-1, H-1]).to(device)
ray_coordinate_ref = []
near_ref, far_ref = pose_ref['near_fars'][ref_idx, 0], pose_ref['near_fars'][ref_idx, 1]
ray_coordinate_world, ray_dir_world, colors, depth_candidates = [],[],[],[]
rays_os, rays_ds, cos_angles, rays_depths = [],[],[],[]
for i in range(V-1,V):
intrinsic = intrinsics[i] #!!!!!! assuming batch size equal to 1
c2w, w2c = c2ws[i].clone(), w2cs[i].clone()
rays_o, rays_d, pixel_coordinates = get_rays_mvs(H, W, intrinsic, c2w, N_rays, is_precrop_iters=is_precrop_iters) # [N_rays 3]
# direction
ray_dir_world.append(rays_d) # toward camera [N_rays 3]
# position
rays_o = rays_o.reshape(1, 3)
rays_o = rays_o.expand(N_rays, -1)
rays_os.append(rays_o)
# colors
pixel_coordinates_int = pixel_coordinates.long()
color = imgs[0, i, :, pixel_coordinates_int[0], pixel_coordinates_int[1]] # [3 N_rays]
colors.append(color)
if depths.shape[2] != 1:
rays_depth = depths[0,i,pixel_coordinates_int[0], pixel_coordinates_int[1]]
rays_depths.append(rays_depth)
# travel along the rays
if with_depth:
depth_candidate = near_fars[pixel_coordinates_int[0], pixel_coordinates_int[1]].reshape(-1,1) # [ray_samples N_samples]
else:
if importanceSampling:
near, far = rays_depth - 0.1, rays_depth + 0.1
near, far = near.view(N_rays, 1), far.view(N_rays, 1)
else:
near, far = near_fars[0, i, 0], near_fars[0, i, 1]
t_vals = torch.linspace(0., 1., steps=N_samples).view(1,N_samples).to(device)
depth_candidate = near * (1. - t_vals) + far * (t_vals)
depth_candidate = depth_candidate.expand([N_rays, N_samples])
# get intervals between samples
mids = .5 * (depth_candidate[..., 1:] + depth_candidate[..., :-1])
upper = torch.cat([mids, depth_candidate[..., -1:]], -1)
lower = torch.cat([depth_candidate[..., :1], mids], -1)
# stratified samples in those intervals
t_rand = torch.rand(depth_candidate.shape, device=device)
depth_candidate = lower + (upper - lower) * t_rand
point_samples = rays_o.unsqueeze(1) + depth_candidate.unsqueeze(-1) * rays_d.unsqueeze(1) # [ray_samples N_samples 3 ]
depth_candidates.append(depth_candidate) # [ray_samples N_rays]
# position
ray_coordinate_world.append(point_samples) # [ray_samples N_samples 3] xyz in [0,1]
points_ndc = get_ndc_coordinate(w2c_ref, intrinsic_ref, point_samples, inv_scale, near=near_ref, far=far_ref, pad=pad)
ray_coordinate_ref.append(points_ndc)
ndc_parameters = {'w2c_ref':w2c_ref, 'intrinsic_ref':intrinsic_ref, 'inv_scale':inv_scale, 'near':near_ref, 'far':far_ref}
colors = torch.cat(colors, dim=1).permute(1,0)
rays_depths = torch.cat(rays_depths) if len(rays_depths)>0 else None
depth_candidates = torch.cat(depth_candidates, dim=0)
ray_dir_world = torch.cat(ray_dir_world, dim=0)
ray_coordinate_world = torch.cat(ray_coordinate_world, dim=0)
rays_os = torch.cat(rays_os, dim=0).permute(1,0)
ray_coordinate_ref = torch.cat(ray_coordinate_ref, dim=0)
return ray_coordinate_world, ray_dir_world, colors, ray_coordinate_ref, depth_candidates, rays_os, rays_depths, ndc_parameters
def build_rays_test(H,W, tgt_to_world, world_to_ref, intrinsic, near_fars_ref, near_fars, N_samples, pad=0, ref_idx=0, use_cpu=False, chunk=-1, idx=-1):
'''
Args:
extrinsic intrinsic [4 4] [3 3)]
N_samples: same as D int
depth_values: [B D]
Returns:
[3 N_rays N_samples]
'''
device = torch.device("cpu") if use_cpu else tgt_to_world.device
if use_cpu:
tgt_to_world,world_to_ref = tgt_to_world.clone().to(device),world_to_ref.clone().to(device)
intrinsic, near_fars_ref, near_fars = intrinsic.clone().to(device),near_fars_ref.clone().to(device),near_fars.clone().to(device)
inv_scale = torch.tensor([W - 1, H - 1]).to(device)
ray_coordinate_world, ray_dir_world, colors, depth_candidates = [],[],[],[]
rays_os, rays_ds = [],[]
intrinsic_render = intrinsic if intrinsic.dim()==2 else intrinsic.mean(0)
rays_o, rays_d, pixel_coordinates = get_rays_mvs(H, W, intrinsic_render, tgt_to_world, isRandom=False, chunk=chunk, idx=idx)
ray_samples = H * W if chunk < 0 else pixel_coordinates.shape[-1]
# direction
ray_dir_world.append(rays_d) # toward camera [N_rays 3]
# position
rays_o = rays_o.reshape(1,3)
rays_o = rays_o.expand(ray_samples, -1)
rays_os.append(rays_o)
# travel along the rays
near, far = near_fars[0], near_fars[1]
t_vals = torch.linspace(0., 1., steps=N_samples).to(device)
depth_candidate = near * (1. - t_vals) + far * (t_vals)
depth_candidate = depth_candidate.expand([ray_samples, N_samples])
point_samples = rays_o.unsqueeze(1) + depth_candidate.unsqueeze(-1) * rays_d.unsqueeze(1) # [3 ray_samples N_samples]
depth_candidates.append(depth_candidate) # [ray_samples N_rays]
# position
near, far = near_fars_ref[ref_idx, 0], near_fars_ref[ref_idx, 1]
ray_coordinate_world.append(point_samples) # [ray_samples N_samples 3] xyz in [0,1]
ray_coordinate_ref = get_ndc_coordinate(world_to_ref, intrinsic, point_samples, inv_scale, near=near, far=far, pad=pad)
ndc_parameters = {'w2c_ref': world_to_ref, 'intrinsic_ref': intrinsic, 'inv_scale': inv_scale, 'near': near, 'far': far}
depth_candidates = torch.cat(depth_candidates, dim=0)
ray_dir_world = torch.cat(ray_dir_world, dim=0)
ray_coordinate_world = torch.cat(ray_coordinate_world, dim=0)
rays_os = torch.cat(rays_os, dim=0)
return ray_coordinate_world, ray_dir_world,ray_coordinate_ref, depth_candidates, rays_os, ndc_parameters
def build_color_volume(point_samples, pose_ref, imgs, img_feat=None, downscale=1.0, with_mask=False):
'''
point_world: [N_ray N_sample 3]
imgs: [N V 3 H W]
'''
device = imgs.device
N, V, C, H, W = imgs.shape
inv_scale = torch.tensor([W - 1, H - 1]).to(device)
C += with_mask
C += 0 if img_feat is None else img_feat.shape[2]
colors = torch.empty((*point_samples.shape[:2], V*C), device=imgs.device, dtype=torch.float)
for i,idx in enumerate(range(V)):
w2c_ref, intrinsic_ref = pose_ref['w2cs'][idx], pose_ref['intrinsics'][idx].clone() # assume camera 0 is reference
point_samples_pixel = get_ndc_coordinate(w2c_ref, intrinsic_ref, point_samples, inv_scale)[None]
grid = point_samples_pixel[...,:2]*2.0-1.0
# img = F.interpolate(imgs[:, idx], scale_factor=downscale, align_corners=True, mode='bilinear',recompute_scale_factor=True) if downscale != 1.0 else imgs[:, idx]
data = F.grid_sample(imgs[:, idx], grid, align_corners=True, mode='bilinear', padding_mode='border')
if img_feat is not None:
data = torch.cat((data,F.grid_sample(img_feat[:,idx], grid, align_corners=True, mode='bilinear', padding_mode='zeros')),dim=1)
if with_mask:
in_mask = ((grid >-1.0)*(grid < 1.0))
in_mask = (in_mask[...,0]*in_mask[...,1]).float()
data = torch.cat((data,in_mask.unsqueeze(1)), dim=1)
colors[...,i*C:i*C+C] = data[0].permute(1, 2, 0)
del grid, point_samples_pixel, data
return colors
def normal_vect(vect, dim=-1):
return vect / (torch.sqrt(torch.sum(vect**2,dim=dim,keepdim=True))+1e-7)
def get_ptsvolume(H, W, D, pad, near_far, intrinsic, c2w):
device = intrinsic.device
near,far = near_far
corners = torch.tensor([[-pad,-pad,1.0],[W+pad,-pad,1.0],[-pad,H+pad,1.0],[W+pad,H+pad,1.0]]).float().to(intrinsic.device)
corners = torch.matmul(corners, torch.inverse(intrinsic).t())
linspace_x = torch.linspace(corners[0, 0], corners[1, 0], W+2*pad)
linspace_y = torch.linspace(corners[ 0, 1], corners[2, 1], H+2*pad)
ys, xs = torch.meshgrid(linspace_y, linspace_x) # HW
near_plane = torch.stack((xs,ys,torch.ones_like(xs)),dim=-1).to(device)*near
far_plane = torch.stack((xs,ys,torch.ones_like(xs)),dim=-1).to(device)*far
linspace_z = torch.linspace(1.0, 0.0, D).view(D,1,1,1).to(device)
pts = linspace_z*near_plane + (1.0-linspace_z)*far_plane
pts = torch.matmul(pts.view(-1,3), c2w[:3,:3].t()) + c2w[:3,3].view(1,3)
return pts.view(D*(H+pad*2),W+pad*2,3)
def index_point_feature(volume_feature, ray_coordinate_ref, chunk=-1):
''''
Args:
volume_color_feature: [B, G, D, h, w]
volume_density_feature: [B C D H W]
ray_dir_world:[3 ray_samples N_samples]
ray_coordinate_ref: [3 N_rays N_samples]
ray_dir_ref: [3 N_rays]
depth_candidates: [N_rays, N_samples]
Returns:
[N_rays, N_samples]
'''
device = volume_feature.device
H, W = ray_coordinate_ref.shape[-3:-1]
if chunk != -1:
features = torch.zeros((volume_feature.shape[1],H,W), device=volume_feature.device, dtype=torch.float, requires_grad=volume_feature.requires_grad)
grid = ray_coordinate_ref.view(1, 1, 1, H * W, 3) * 2 - 1.0 # [1 1 H W 3] (x,y,z)
for i in range(0, H*W, chunk):
features[:,i:i + chunk] = F.grid_sample(volume_feature, grid[:,:,:,i:i + chunk], align_corners=True, mode='bilinear')[0]
features = features.permute(1,2,0)
else:
grid = ray_coordinate_ref.view(-1, 1, H, W, 3).to(device) * 2 - 1.0 # [1 1 H W 3] (x,y,z)
features = F.grid_sample(volume_feature, grid, align_corners=True, mode='bilinear')[:,:,0].permute(2,3,0,1).squeeze()#, padding_mode="border"
return features
def to_tensor_cuda(data, device, filter):
for item in data.keys():
if item in filter:
continue
if type(data[item]) is np.ndarray:
data[item] = torch.tensor(data[item], dtype=torch.float32, device= device)
else:
data[item] = data[item].float().to(device)
return data
def to_cuda(data, device, filter):
for item in data.keys():
if item in filter:
continue
data[item] = data[item].float().to(device)
return data
def tensor_unsqueeze(data, filter):
for item in data.keys():
if item in filter:
continue
data[item] = data[item][None]
return data
def filter_keys(dict):
dict.pop('N_samples')
if 'ndc' in dict.keys():
dict.pop('ndc')
if 'lindisp' in dict.keys():
dict.pop('lindisp')
return dict
def sub_selete_data(data_batch, device, idx, filtKey=[], filtIndex=['view_ids_all','c2ws_all','scan','bbox','w2ref','ref2w','light_id','ckpt','idx']):
data_sub_selete = {}
for item in data_batch.keys():
data_sub_selete[item] = data_batch[item][:,idx].float() if (item not in filtIndex and torch.is_tensor(item) and item.dim()>2) else data_batch[item].float()
if not data_sub_selete[item].is_cuda:
data_sub_selete[item] = data_sub_selete[item].to(device)
return data_sub_selete
def detach_data(dictionary):
dictionary_new = {}
for key in dictionary.keys():
dictionary_new[key] = dictionary[key].detach().clone()
return dictionary_new
def read_pfm(filename):
file = open(filename, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().decode('utf-8').rstrip()
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8'))
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
file.close()
return data, scale
def gen_render_path(c2ws, N_views=30):
N = len(c2ws)
rotvec, positions = [], []
rotvec_inteplat, positions_inteplat = [], []
weight = np.linspace(1.0, .0, N_views//3, endpoint=False).reshape(-1, 1)
for i in range(N):
r = R.from_matrix(c2ws[i, :3, :3])
euler_ange = r.as_euler('xyz', degrees=True).reshape(1, 3)
if i:
mask = np.abs(euler_ange - rotvec[0])>180
euler_ange[mask] += 360.0
rotvec.append(euler_ange)
positions.append(c2ws[i, :3, 3:].reshape(1, 3))
if i:
rotvec_inteplat.append(weight * rotvec[i - 1] + (1.0 - weight) * rotvec[i])
positions_inteplat.append(weight * positions[i - 1] + (1.0 - weight) * positions[i])
rotvec_inteplat.append(weight * rotvec[-1] + (1.0 - weight) * rotvec[0])
positions_inteplat.append(weight * positions[-1] + (1.0 - weight) * positions[0])
c2ws_render = []
angles_inteplat, positions_inteplat = np.concatenate(rotvec_inteplat), np.concatenate(positions_inteplat)
for rotvec, position in zip(angles_inteplat, positions_inteplat):
c2w = np.eye(4)
c2w[:3, :3] = R.from_euler('xyz', rotvec, degrees=True).as_matrix()
c2w[:3, 3:] = position.reshape(3, 1)
c2ws_render.append(c2w.copy())
c2ws_render = np.stack(c2ws_render)
return c2ws_render
trans_t = lambda t : torch.Tensor([
[1,0,0,0],
[0,1,0,0],
[0,0,1,t],
[0,0,0,1]]).float()
rot_phi = lambda phi : torch.Tensor([
[1,0,0,0],
[0,np.cos(phi),-np.sin(phi),0],
[0,np.sin(phi), np.cos(phi),0],
[0,0,0,1]]).float()
rot_theta = lambda th : torch.Tensor([
[np.cos(th),0,-np.sin(th),0],
[0,1,0,0],
[np.sin(th),0, np.cos(th),0],
[0,0,0,1]]).float()
def gen_render_path_spherical(theta, phi, radius=1.0):
blender2opencv = torch.Tensor([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
c2w = trans_t(radius)
c2w = rot_phi(phi/180.*np.pi) @ c2w
c2w = rot_theta(theta/180.*np.pi) @ c2w
c2w = torch.Tensor(np.array([[-1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]])) @ c2w
return c2w
from scipy.interpolate import CubicSpline
def gen_render_path_pixelNeRF(c2ws, N_views=30):
t_in = np.array([0, 2, 3, 5, 6]).astype(np.float32)
pose_quat = np.array(
[
[0.9698, 0.2121, 0.1203, -0.0039],
[0.7020, 0.1578, 0.4525, 0.5268],
[0.6766, 0.3176, 0.5179, 0.4161],
[0.9085, 0.4020, 0.1139, -0.0025],
[0.9698, 0.2121, 0.1203, -0.0039],
]
)
n_inter = N_views // 5
t_out = np.linspace(t_in[0], t_in[-1], n_inter * int(t_in[-1])).astype(np.float32)
scales = np.array([450.0, 450.0, 450.0, 450.0, 450.0]).astype(np.float32)
s_new = CubicSpline(t_in, scales, bc_type="periodic")
s_new = s_new(t_out)
q_new = CubicSpline(t_in, pose_quat, bc_type="periodic")
q_new = q_new(t_out)
q_new = q_new / np.linalg.norm(q_new, 2, 1)[:, None]
render_poses = []
for i, (new_q, scale) in enumerate(zip(q_new, s_new)):
R = R.from_quat(new_q)
t = R[:, 2] * scale
new_pose = np.eye(4)
new_pose[:3, :3] = R
new_pose[:3, 3] = t
new_pose = c2ws[0,0] @ new_pose
render_poses.append(new_pose)
render_poses = torch.stack(render_poses, dim=0)
return render_poses
################################################# MVS helper functions #####################################
from kornia.utils import create_meshgrid
def homo_warp(src_feat, proj_mat, depth_values, src_grid=None, pad=0):
"""
src_feat: (B, C, H, W)
proj_mat: (B, 3, 4) equal to "src_proj @ ref_proj_inv"
depth_values: (B, D, H, W)
out: (B, C, D, H, W)
"""
if src_grid==None:
B, C, H, W = src_feat.shape
device = src_feat.device
if pad>0:
H_pad, W_pad = H + pad*2, W + pad*2
else:
H_pad, W_pad = H, W
depth_values = depth_values[...,None,None].repeat(1, 1, H_pad, W_pad)
D = depth_values.shape[1]
R = proj_mat[:, :, :3] # (B, 3, 3)
T = proj_mat[:, :, 3:] # (B, 3, 1)
# create grid from the ref frame
ref_grid = create_meshgrid(H_pad, W_pad, normalized_coordinates=False, device=device) # (1, H, W, 2)
if pad>0:
ref_grid -= pad
ref_grid = ref_grid.permute(0, 3, 1, 2) # (1, 2, H, W)
ref_grid = ref_grid.reshape(1, 2, W_pad * H_pad) # (1, 2, H*W)
ref_grid = ref_grid.expand(B, -1, -1) # (B, 2, H*W)
ref_grid = torch.cat((ref_grid, torch.ones_like(ref_grid[:, :1])), 1) # (B, 3, H*W)
ref_grid_d = ref_grid.repeat(1, 1, D) # (B, 3, D*H*W)
src_grid_d = R @ ref_grid_d + T / depth_values.view(B, 1, D * W_pad * H_pad)
del ref_grid_d, ref_grid, proj_mat, R, T, depth_values # release (GPU) memory
src_grid = src_grid_d[:, :2] / src_grid_d[:, 2:] # divide by depth (B, 2, D*H*W)
del src_grid_d
src_grid[:, 0] = src_grid[:, 0] / ((W - 1) / 2) - 1 # scale to -1~1
src_grid[:, 1] = src_grid[:, 1] / ((H - 1) / 2) - 1 # scale to -1~1
src_grid = src_grid.permute(0, 2, 1) # (B, D*H*W, 2)
src_grid = src_grid.view(B, D, W_pad, H_pad, 2)
B, D, W_pad, H_pad = src_grid.shape[:4]
warped_src_feat = F.grid_sample(src_feat, src_grid.view(B, D, W_pad * H_pad, 2),
mode='bilinear', padding_mode='zeros',
align_corners=True) # (B, C, D, H*W)
warped_src_feat = warped_src_feat.view(B, -1, D, H_pad, W_pad)
# src_grid = src_grid.view(B, 1, D, H_pad, W_pad, 2)
return warped_src_feat, src_grid
############################### render path ####################################
def pose_spherical_nerf(euler, radius=4.0):
c2ws_render = np.eye(4)
c2ws_render[:3,:3] = R.from_euler('xyz', euler, degrees=True).as_matrix()
c2ws_render[:3,3] = c2ws_render[:3,:3] @ np.array([0.0,0.0,-radius])
return c2ws_render
def normalize(v):
"""Normalize a vector."""
return v/np.linalg.norm(v)
def pose_spherical_dtu(radii, focus_depth, n_poses=120, world_center=np.array([0,0,0])):
"""
Computes poses that follow a spiral path for rendering purpose.
See https://github.com/Fyusion/LLFF/issues/19
In particular, the path looks like:
https://tinyurl.com/ybgtfns3
Inputs:
radii: (3) radii of the spiral for each axis
focus_depth: float, the depth that the spiral poses look at
n_poses: int, number of poses to create along the path
Outputs:
poses_spiral: (n_poses, 3, 4) the poses in the spiral path
"""
poses_spiral = []
for t in np.linspace(0, 4 * np.pi, n_poses + 1)[:-1]: # rotate 4pi (2 rounds)
# the parametric function of the spiral (see the interactive web)
center = np.array([np.cos(t), -np.sin(t), -np.sin(0.5 * t)]) * radii
# the viewing z axis is the vector pointing from the @focus_depth plane
# to @center
z = normalize(center - np.array([0, 0, -focus_depth]))
# compute other axes as in @average_poses
y_ = np.array([0, 1, 0]) # (3)
x = normalize(np.cross(y_, z)) # (3)
y = np.cross(z, x) # (3)
poses_spiral += [np.stack([x, y, z, center+world_center], 1)] # (3, 4)
return np.stack(poses_spiral, 0) @ np.array([[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,1]]) # (n_poses, 3, 4)
from torch.optim.lr_scheduler import CosineAnnealingLR, MultiStepLR
from warmup_scheduler import GradualWarmupScheduler
def get_scheduler(hparams, optimizer):
eps = 1e-8
if hparams.lr_scheduler == 'steplr':
scheduler = MultiStepLR(optimizer, milestones=hparams.decay_step,
gamma=hparams.decay_gamma)
elif hparams.lr_scheduler == 'cosine':
scheduler = CosineAnnealingLR(optimizer, T_max=hparams.num_epochs, eta_min=eps)
else:
raise ValueError('scheduler not recognized!')
if hparams.warmup_epochs > 0 and hparams.optimizer not in ['radam', 'ranger']:
scheduler = GradualWarmupScheduler(optimizer, multiplier=hparams.warmup_multiplier,
total_epoch=hparams.warmup_epochs, after_scheduler=scheduler)
return scheduler
#### pairing ####
def get_nearest_pose_ids(tar_pose, ref_poses, num_select):
'''
Args:
tar_pose: target pose [N, 4, 4]
ref_poses: reference poses [M, 4, 4]
num_select: the number of nearest views to select
Returns: the selected indices
'''
dists = np.linalg.norm(tar_pose[:,None,:3,3] - ref_poses[None,:,:3,3], axis=-1)
sorted_ids = np.argsort(dists, axis=-1)
selected_ids = sorted_ids[:,:num_select]
return selected_ids