-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathMKRWANFWUpdate_standalone.ino
376 lines (310 loc) · 9.15 KB
/
MKRWANFWUpdate_standalone.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/*
* STANDALONE FIRMWARE UPDATE FOR MKR WAN 1300/1310
* This sketch implements STM32 bootloader protocol
* It is based on stm32flash (mirrored here git@github.com:facchinm/stm32flash.git)
* with as little modifications as possible.
*
* To generate it after a firmware update, execute
*
* echo -n "const " > fw.h && xxd -i mlm32l07x01.bin >> fw.h
*
*/
#include "fw.h"
#include "stm32.h"
#include "serial_arduino.h"
#include <MKRWAN.h>
/* device globals */
stm32_t *stm = NULL;
void *p_st = NULL;
int ret = -1;
void setup() {
// put your setup code here, to run once:
Serial.begin(115200);
while (!Serial);
struct port_interface port;
struct port_options port_opts = {
.baudRate = 115200,
.serial_mode = SERIAL_8E1
};
port.flags = PORT_CMD_INIT | PORT_GVR_ETX | PORT_BYTE | PORT_RETRY;
port.dev = &SerialLoRa;
port.ops = &port_opts;
assignCallbacks(&port);
pinMode(LED_BUILTIN, OUTPUT);
pinMode(LORA_BOOT0, OUTPUT);
digitalWrite(LORA_BOOT0, HIGH);
pinMode(LORA_RESET, OUTPUT);
digitalWrite(LORA_RESET, HIGH);
delay(200);
digitalWrite(LORA_RESET, LOW);
delay(200);
digitalWrite(LORA_RESET, HIGH);
delay(200);
Serial.println("Press a key to start FW update");
port.open(&port);
//port.flush(&port);
stm = stm32_init(&port, 1);
fprintf(diag, "Version : 0x%02x\n", stm->bl_version);
if (port.flags & PORT_GVR_ETX) {
fprintf(diag, "Option 1 : 0x%02x\n", stm->option1);
fprintf(diag, "Option 2 : 0x%02x\n", stm->option2);
}
fprintf(diag, "Device ID : 0x%04x (%s)\n", stm->pid, stm->dev->name);
fprintf(diag, "- RAM : Up to %dKiB (%db reserved by bootloader)\n", (stm->dev->ram_end - 0x20000000) / 1024, stm->dev->ram_start - 0x20000000);
fprintf(diag, "- Flash : Up to %dKiB (size first sector: %dx%d)\n", (stm->dev->fl_end - stm->dev->fl_start ) / 1024, stm->dev->fl_pps, stm->dev->fl_ps[0]);
fprintf(diag, "- Option RAM : %db\n", stm->dev->opt_end - stm->dev->opt_start + 1);
fprintf(diag, "- System RAM : %dKiB\n", (stm->dev->mem_end - stm->dev->mem_start) / 1024);
uint8_t buffer[256];
uint32_t addr, start, end;
unsigned int len;
int failed = 0;
int first_page, num_pages;
int npages = mlm32l07x01_bin_len / 128 + 1;
int spage = 0;
bool verify = 1;
int retry = 10;
bool reset_flag = 0;
bool exec_flag = 1;
int execute = 0; // address
/*
Cleanup addresses:
Starting from options
start_addr, readwrite_len, spage, npages
and using device memory size, compute
start, end, first_page, num_pages
*/
if (!npages) {
start = stm->dev->fl_start;
end = stm->dev->fl_end;
first_page = 0;
num_pages = STM32_MASS_ERASE;
} else {
first_page = spage;
start = flash_page_to_addr(first_page);
if (start > stm->dev->fl_end) {
fprintf(stderr, "Address range exceeds flash size.\n");
ret = -1;
return;
}
if (npages) {
num_pages = npages;
end = flash_page_to_addr(first_page + num_pages);
if (end > stm->dev->fl_end)
end = stm->dev->fl_end;
} else {
end = stm->dev->fl_end;
num_pages = flash_addr_to_page_ceil(end) - first_page;
}
if (!first_page && end == stm->dev->fl_end)
num_pages = STM32_MASS_ERASE;
}
ret = 0;
int s_err;
#if 0
fprintf(diag, "Erasing flash\n");
if (num_pages != STM32_MASS_ERASE &&
(start != flash_page_to_addr(first_page)
|| end != flash_page_to_addr(first_page + num_pages))) {
fprintf(stderr, "Specified start & length are invalid (must be page aligned)\n");
ret = 1;
return;
}
s_err = stm32_erase_memory(stm, first_page, num_pages);
if (s_err != STM32_ERR_OK) {
fprintf(stderr, "Failed to erase memory\n");
ret = 1;
return;
}
ret = 0;
#endif
fprintf(diag, "Write to memory\n");
off_t offset = 0;
ssize_t r;
unsigned int size;
unsigned int max_wlen, max_rlen;
#define STM32_MAX_RX_FRAME 256 /* cmd read memory */
#define STM32_MAX_TX_FRAME (1 + 256 + 1) /* cmd write memory */
max_wlen = STM32_MAX_TX_FRAME - 2; /* skip len and crc */
max_wlen &= ~3; /* 32 bit aligned */
max_rlen = STM32_MAX_RX_FRAME;
max_rlen = max_rlen < max_wlen ? max_rlen : max_wlen;
/* Assume data from stdin is whole device */
size = end - start;
// TODO: It is possible to write to non-page boundaries, by reading out flash
// from partial pages and combining with the input data
// if ((start % stm->dev->fl_ps[i]) != 0 || (end % stm->dev->fl_ps[i]) != 0) {
// fprintf(stderr, "Specified start & length are invalid (must be page aligned)\n");
// goto close;
// }
// TODO: If writes are not page aligned, we should probably read out existing flash
// contents first, so it can be preserved and combined with new data
if (num_pages) {
fprintf(diag, "Erasing memory\n");
s_err = stm32_erase_memory(stm, first_page, num_pages);
if (s_err != STM32_ERR_OK) {
fprintf(stderr, "Failed to erase memory\n");
ret = -1;
return;
}
}
addr = start;
while (addr < end && offset < size) {
uint32_t left = end - addr;
len = max_wlen > left ? left : max_wlen;
len = len > size - offset ? size - offset : len;
memcpy(buffer, &mlm32l07x01_bin[offset], len);
if (len == 0) {
fprintf(stderr, "Failed to read input file\n");
ret = -1;
return;
}
again:
s_err = stm32_write_memory(stm, addr, buffer, len);
if (s_err != STM32_ERR_OK) {
fprintf(stderr, "Failed to write memory at address 0x%08x\n", addr);
ret = -1;
return;
}
if (verify) {
uint8_t compare[len];
unsigned int offset, rlen;
offset = 0;
while (offset < len) {
rlen = len - offset;
rlen = rlen < max_rlen ? rlen : max_rlen;
s_err = stm32_read_memory(stm, addr + offset, compare + offset, rlen);
if (s_err != STM32_ERR_OK) {
fprintf(stderr, "Failed to read memory at address 0x%08x\n", addr + offset);
ret = -1;
return;
}
offset += rlen;
}
for (r = 0; r < len; ++r)
if (buffer[r] != compare[r]) {
if (failed == retry) {
fprintf(stderr, "Failed to verify at address 0x%08x, expected 0x%02x and found 0x%02x\n",
(uint32_t)(addr + r),
buffer [r],
compare[r]
);
ret = -1;
return;
}
++failed;
goto again;
}
failed = 0;
}
addr += len;
offset += len;
fprintf(diag,
"Wrote %saddress 0x%08x (%d%%)\n ",
verify ? "and verified " : "",
addr,
100 * offset / size
);
}
fprintf(diag, "Done.\n");
ret = 0;
if (stm && exec_flag && ret == 0) {
if (execute == 0)
execute = stm->dev->fl_start;
fprintf(diag, "\nStarting execution at address 0x%08x... ", execute);
if (stm32_go(stm, execute) == STM32_ERR_OK) {
reset_flag = 0;
fprintf(diag, "done.\n");
} else
fprintf(diag, "failed.\n");
}
}
void resetModuleRunning() {
digitalWrite(LORA_BOOT0, LOW);
SerialLoRa.end();
SerialLoRa.begin(19200);
delay(100);
digitalWrite(LORA_RESET, HIGH);
delay(100);
digitalWrite(LORA_RESET, LOW);
delay(100);
digitalWrite(LORA_RESET, HIGH);
delay(100);
}
void loop() {
// put your main code here, to run repeatedly:
if (ret == 0) {
Serial.println("Flashing ok :)");
SerialLoRa.end();
LoRaModem* modem = new LoRaModem();
modem->begin(EU868);
Serial.println(modem->version());
}
while (1);
}
static int is_addr_in_ram(uint32_t addr)
{
return addr >= stm->dev->ram_start && addr < stm->dev->ram_end;
}
static int is_addr_in_flash(uint32_t addr)
{
return addr >= stm->dev->fl_start && addr < stm->dev->fl_end;
}
static int is_addr_in_opt_bytes(uint32_t addr)
{
/* option bytes upper range is inclusive in our device table */
return addr >= stm->dev->opt_start && addr <= stm->dev->opt_end;
}
static int is_addr_in_sysmem(uint32_t addr)
{
return addr >= stm->dev->mem_start && addr < stm->dev->mem_end;
}
/* returns the page that contains address "addr" */
static int flash_addr_to_page_floor(uint32_t addr)
{
int page;
uint32_t *psize;
if (!is_addr_in_flash(addr))
return 0;
page = 0;
addr -= stm->dev->fl_start;
psize = stm->dev->fl_ps;
while (addr >= psize[0]) {
addr -= psize[0];
page++;
if (psize[1])
psize++;
}
return page;
}
/* returns the first page whose start addr is >= "addr" */
int flash_addr_to_page_ceil(uint32_t addr)
{
int page;
uint32_t *psize;
if (!(addr >= stm->dev->fl_start && addr <= stm->dev->fl_end))
return 0;
page = 0;
addr -= stm->dev->fl_start;
psize = stm->dev->fl_ps;
while (addr >= psize[0]) {
addr -= psize[0];
page++;
if (psize[1])
psize++;
}
return addr ? page + 1 : page;
}
/* returns the lower address of flash page "page" */
static uint32_t flash_page_to_addr(int page)
{
int i;
uint32_t addr, *psize;
addr = stm->dev->fl_start;
psize = stm->dev->fl_ps;
for (i = 0; i < page; i++) {
addr += psize[0];
if (psize[1])
psize++;
}
return addr;
}