forked from ncduy0303/Competitive-Programming
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Closest Pairs.cpp
80 lines (68 loc) · 2.6 KB
/
Closest Pairs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
// Given n points (x, y) on a plane, find the minimum distance between a pair of points
// Time complexity: (nlogn)
// Problem link: https://vjudge.net/problem/UVA-10245
#include <bits/stdc++.h>
using namespace std;
#define ar array
#define ll long long
const int MAX_N = 1e4 + 1;
const int MOD = 1e9 + 7;
const int INF = 1e4;
const ll LINF = 1e18;
struct pt {
double x, y;
bool operator< (pt a) { // sort based on x
return (x == a.x) ? y < a.y : x < a.x;
}
};
struct cmp { // custom comparator for set (sort based on y)
bool operator() (pt a, pt b) {
return (a.y == b.y) ? a.x < b.x : a.y < b.y;
}
};
void solve() {
while (true) {
int n; cin >> n;
if (!n) return;
pt pnts[n];
set<pt,cmp> box;
for (int i = 0; i < n; i++) cin >> pnts[i].x >> pnts[i].y;
sort(pnts, pnts + n); // sort bases on x-coordinates (from left to right)
double ans = INF;
/* Naive approach O(n^2) -> Searching through all pair of points
for (int l = 0; l < n; l++) {
for (int r = l + 1; r < n; r++) {
if (pnts[r].second - pnts[l].second > ans) break; // this helps speed up the approach
ans = min(ans, hypot(pnts[r].first - pnts[l].first, pnts[r].second - pnts[l].second));
}
}*/
box.clear();
box.insert(pnts[0]);
for (int l = 0, r = 1; r < n; r++) {
// removing leftmost points that will not contribute to the minimum distance
while (l < r && pnts[r].x - pnts[l].x >= ans)
box.erase(pnts[l++]);
auto lo = box.lower_bound({pnts[r].x, pnts[r].y - ans});
auto hi = box.upper_bound({pnts[r].x, pnts[r].y + ans});
for (; lo != hi; lo++)
ans = min(ans, hypot(pnts[r].x - lo->x, pnts[r].y - lo->y));
// A more succinct way to write
// for (auto it = box.lower_bound({pnts[r].x - ans, pnts[r].y - ans}); it != box.end() && it->y - pnts[r].y <= ans; it++)
// ans = min(ans, hypot(pnts[r].x - it->x, pnts[r].y - it->y));
box.insert(pnts[r]);
}
if (ans == INF) cout << "INFINITY\n";
else cout << fixed << setprecision(4) << ans << "\n";
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
int tc; tc = 1;
for (int t = 1; t <= tc; t++) {
// cout << "Case #" << t << ": ";
solve();
}
}