|
| 1 | +from typing import Any, Dict, List, Optional, Union |
| 2 | + |
| 3 | +from ConfigSpace.configuration_space import ConfigurationSpace |
| 4 | +from ConfigSpace.hyperparameters import ( |
| 5 | + CategoricalHyperparameter, |
| 6 | + UniformFloatHyperparameter, |
| 7 | + UniformIntegerHyperparameter, |
| 8 | +) |
| 9 | + |
| 10 | +import numpy as np |
| 11 | + |
| 12 | +from sklearn.base import BaseEstimator |
| 13 | +from sklearn.ensemble import ExtraTreesRegressor |
| 14 | +from sklearn.feature_selection import SelectFromModel |
| 15 | + |
| 16 | +from autoPyTorch.datasets.base_dataset import BaseDatasetPropertiesType |
| 17 | +from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.feature_preprocessing. \ |
| 18 | + base_feature_preprocessor import autoPyTorchFeaturePreprocessingComponent |
| 19 | +from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.feature_preprocessing. \ |
| 20 | + utils import NoneType_ |
| 21 | +from autoPyTorch.utils.common import FitRequirement, HyperparameterSearchSpace, add_hyperparameter, check_none |
| 22 | + |
| 23 | + |
| 24 | +CRITERION_CHOICES = ('mse', 'friedman_mse', 'mae') |
| 25 | + |
| 26 | + |
| 27 | +class ExtraTreesPreprocessorRegression(autoPyTorchFeaturePreprocessingComponent): |
| 28 | + """ |
| 29 | + Selects features based on importance weights using extra trees |
| 30 | + """ |
| 31 | + def __init__(self, bootstrap: bool = True, n_estimators: int = 10, |
| 32 | + criterion: str = "mse", max_features: float = 1, |
| 33 | + max_depth: Union[int, NoneType_] = 5, min_samples_split: int = 2, |
| 34 | + min_samples_leaf: int = 1, min_weight_fraction_leaf: float = 0, |
| 35 | + max_leaf_nodes: Union[int, NoneType_] = "none", |
| 36 | + oob_score: bool = False, verbose: int = 0, |
| 37 | + random_state: Optional[np.random.RandomState] = None): |
| 38 | + self.bootstrap = bootstrap |
| 39 | + self.n_estimators = n_estimators |
| 40 | + if criterion not in CRITERION_CHOICES: |
| 41 | + raise ValueError(f"`criterion` of {self.__class__.__name__} " |
| 42 | + f"must be in {CRITERION_CHOICES}, but got: {criterion}") |
| 43 | + self.criterion = criterion |
| 44 | + self.max_features = max_features |
| 45 | + self.max_depth = max_depth |
| 46 | + self.min_samples_split = min_samples_split |
| 47 | + self.min_samples_leaf = min_samples_leaf |
| 48 | + self.min_weight_fraction_leaf = min_weight_fraction_leaf |
| 49 | + self.max_leaf_nodes = max_leaf_nodes |
| 50 | + self.oob_score = oob_score |
| 51 | + self.verbose = verbose |
| 52 | + |
| 53 | + super().__init__(random_state=random_state) |
| 54 | + |
| 55 | + self.add_fit_requirements([ |
| 56 | + FitRequirement('numerical_columns', (List,), user_defined=True, dataset_property=True)]) |
| 57 | + |
| 58 | + def get_components_kwargs(self) -> Dict[str, Any]: |
| 59 | + """ |
| 60 | + returns keyword arguments required by the feature preprocessor |
| 61 | +
|
| 62 | + Returns: |
| 63 | + Dict[str, Any]: kwargs |
| 64 | + """ |
| 65 | + return dict( |
| 66 | + bootstrap=self.bootstrap, |
| 67 | + n_estimators=self.n_estimators, |
| 68 | + criterion=self.criterion, |
| 69 | + max_features=self.max_features, |
| 70 | + max_depth=self.max_depth, |
| 71 | + min_samples_split=self.min_samples_split, |
| 72 | + min_samples_leaf=self.min_samples_leaf, |
| 73 | + min_weight_fraction_leaf=self.min_weight_fraction_leaf, |
| 74 | + max_leaf_nodes=self.max_leaf_nodes, |
| 75 | + oob_score=self.oob_score, |
| 76 | + verbose=self.verbose, |
| 77 | + random_state=self.random_state, |
| 78 | + ) |
| 79 | + |
| 80 | + def fit(self, X: Dict[str, Any], y: Any = None) -> BaseEstimator: |
| 81 | + |
| 82 | + self.check_requirements(X, y) |
| 83 | + |
| 84 | + if check_none(self.max_leaf_nodes): |
| 85 | + self.max_leaf_nodes = None |
| 86 | + elif isinstance(self.max_leaf_nodes, int): |
| 87 | + self.max_leaf_nodes = int(self.max_leaf_nodes) |
| 88 | + else: |
| 89 | + raise ValueError(f"Expected `max_leaf_nodes` to be either " |
| 90 | + f"in ('None', 'none', None) or an integer, got {self.max_leaf_nodes}") |
| 91 | + |
| 92 | + if check_none(self.max_depth): |
| 93 | + self.max_depth = None |
| 94 | + elif isinstance(self.max_depth, int): |
| 95 | + self.max_depth = int(self.max_depth) |
| 96 | + else: |
| 97 | + raise ValueError(f"Expected `max_depth` to be either " |
| 98 | + f"in ('None', 'none', None) or an integer, got {self.max_depth}") |
| 99 | + |
| 100 | + num_features = len(X['dataset_properties']['numerical_columns']) |
| 101 | + max_features = int( |
| 102 | + float(self.max_features) * (np.log(num_features) + 1)) |
| 103 | + # Use at most half of the features |
| 104 | + max_features = max(1, min(int(num_features / 2), max_features)) |
| 105 | + |
| 106 | + # TODO: add class_weights |
| 107 | + estimator = ExtraTreesRegressor(**self.get_components_kwargs()) |
| 108 | + |
| 109 | + self.preprocessor['numerical'] = SelectFromModel(estimator=estimator, |
| 110 | + threshold='mean', |
| 111 | + prefit=False) |
| 112 | + return self |
| 113 | + |
| 114 | + @staticmethod |
| 115 | + def get_hyperparameter_search_space( |
| 116 | + dataset_properties: Optional[Dict[str, BaseDatasetPropertiesType]] = None, |
| 117 | + bootstrap: HyperparameterSearchSpace = HyperparameterSearchSpace(hyperparameter='bootstrap', |
| 118 | + value_range=(True, False), |
| 119 | + default_value=True, |
| 120 | + ), |
| 121 | + n_estimators: HyperparameterSearchSpace = HyperparameterSearchSpace(hyperparameter='n_estimators', |
| 122 | + value_range=(100,), |
| 123 | + default_value=100, |
| 124 | + ), |
| 125 | + max_depth: HyperparameterSearchSpace = HyperparameterSearchSpace(hyperparameter='max_depth', |
| 126 | + value_range=("none",), |
| 127 | + default_value="none", |
| 128 | + ), |
| 129 | + max_features: HyperparameterSearchSpace = HyperparameterSearchSpace(hyperparameter='max_features', |
| 130 | + value_range=(0.1, 1), |
| 131 | + default_value=1, |
| 132 | + ), |
| 133 | + criterion: HyperparameterSearchSpace = HyperparameterSearchSpace(hyperparameter='criterion', |
| 134 | + value_range=CRITERION_CHOICES, |
| 135 | + default_value="mse", |
| 136 | + ), |
| 137 | + min_samples_split: HyperparameterSearchSpace = HyperparameterSearchSpace(hyperparameter='min_samples_split', |
| 138 | + value_range=(2, 20), |
| 139 | + default_value=2, |
| 140 | + ), |
| 141 | + min_samples_leaf: HyperparameterSearchSpace = HyperparameterSearchSpace(hyperparameter='min_samples_leaf', |
| 142 | + value_range=(1, 20), |
| 143 | + default_value=1, |
| 144 | + ), |
| 145 | + min_weight_fraction_leaf: HyperparameterSearchSpace = HyperparameterSearchSpace( |
| 146 | + hyperparameter='min_weight_fraction_leaf', |
| 147 | + value_range=(0,), |
| 148 | + default_value=0), |
| 149 | + max_leaf_nodes: HyperparameterSearchSpace = HyperparameterSearchSpace(hyperparameter='max_leaf_nodes', |
| 150 | + value_range=("none",), |
| 151 | + default_value="none", |
| 152 | + ), |
| 153 | + ) -> ConfigurationSpace: |
| 154 | + |
| 155 | + cs = ConfigurationSpace() |
| 156 | + add_hyperparameter(cs, bootstrap, CategoricalHyperparameter) |
| 157 | + add_hyperparameter(cs, n_estimators, UniformIntegerHyperparameter) |
| 158 | + add_hyperparameter(cs, max_features, UniformFloatHyperparameter) |
| 159 | + add_hyperparameter(cs, criterion, CategoricalHyperparameter) |
| 160 | + add_hyperparameter(cs, max_depth, UniformIntegerHyperparameter) |
| 161 | + add_hyperparameter(cs, min_samples_split, UniformIntegerHyperparameter) |
| 162 | + add_hyperparameter(cs, min_samples_leaf, UniformIntegerHyperparameter) |
| 163 | + add_hyperparameter(cs, min_weight_fraction_leaf, UniformFloatHyperparameter) |
| 164 | + add_hyperparameter(cs, max_leaf_nodes, UniformIntegerHyperparameter) |
| 165 | + |
| 166 | + return cs |
| 167 | + |
| 168 | + @staticmethod |
| 169 | + def get_properties(dataset_properties: Optional[Dict[str, BaseDatasetPropertiesType]] = None) -> Dict[str, Any]: |
| 170 | + return {'shortname': 'ETR', |
| 171 | + 'name': 'Extra Trees Regressor Preprocessing', |
| 172 | + 'handles_sparse': True, |
| 173 | + 'handles_regression': True, |
| 174 | + 'handles_classification': False |
| 175 | + } |
0 commit comments