@@ -35,22 +35,22 @@ Image Classification
35
35
36
36
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
37
37
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz
38
- 0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 32768/26421880 [00:00<01:52, 235602.90it/s] 0%| | 65536/26421880 [00:00<01:52, 234351.38it/s] 0%| | 131072/26421880 [00:00<01:17, 340594.04it/s] 1%| | 229376/26421880 [00:00<00:54, 483036.36it/s] 2%|1 | 458752/26421880 [00:00<00:28, 898436.87it/s] 3%|3 | 917504/26421880 [00:00<00:14, 1705017.51it/s] 7%|7 | 1867776/26421880 [00:00<00:07, 3360695.16it/s] 14%|#4 | 3702784/26421880 [00:01<00:03, 6451569.09it/s] 26%|##5 | 6750208/26421880 [00:01<00:01, 11225603.32it/s] 37%|###7 | 9863168/26421880 [00:01<00:01, 14590423.72it/s] 49%|####9 | 13008896/26421880 [00:01<00:00, 16972192.00it/s] 61%|###### | 16056320/26421880 [00:01<00:00, 18420560.72it/s] 72%|#######1 | 19005440/26421880 [00:01<00:00, 19207823.64it/s] 84%|########3 | 22085632/26421880 [00:01<00:00, 20031175.65it/s] 95%|#########5| 25231360/26421880 [00:02<00:00, 20738665.14it/s] 100%|##########| 26421880/26421880 [00:02<00:00, 12457424.40it/s]
38
+ 0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 32768/26421880 [00:00<02:05, 209450.57it/s] 0%| | 65536/26421880 [00:00<02:06, 207572.68it/s] 0%| | 131072/26421880 [00:00<01:27, 300950.17it/s] 1%| | 229376/26421880 [00:00<01:01, 427461.71it/s] 2%|1 | 491520/26421880 [00:00<00:29, 869131.19it/s] 4%|3 | 950272/26421880 [00:00<00:16, 1556559.36it/s] 7%|7 | 1933312/26421880 [00:01<00:07, 3073356.65it/s] 15%|#4 | 3833856/26421880 [00:01<00:03, 5905149.97it/s] 26%|##6 | 6881280/26421880 [00:01<00:01, 10049278.31it/s] 38%|###7 | 9928704/26421880 [00:01<00:01, 12847665.35it/s] 48%|####8 | 12746752/26421880 [00:01<00:00, 14324144.88it/s] 60%|#####9 | 15826944/26421880 [00:01<00:00, 15871843.82it/s] 71%|#######1 | 18874368/26421880 [00:02<00:00, 16872598.82it/s] 83%|########2 | 21856256/26421880 [00:02<00:00, 17403201.35it/s] 94%|#########4| 24838144/26421880 [00:02<00:00, 17815867.41it/s] 100%|##########| 26421880/26421880 [00:02<00:00, 11043343.33it/s]
39
39
Extracting ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
40
40
41
41
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
42
42
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz
43
- 0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 205829.78it /s] 100%|##########| 29515/29515 [00:00<00:00, 205327.60it /s]
43
+ 0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 184548.40it /s] 100%|##########| 29515/29515 [00:00<00:00, 184079.42it /s]
44
44
Extracting ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
45
45
46
46
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
47
47
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
48
- 0%| | 0/4422102 [00:00<?, ?it/s] 1%| | 32768/4422102 [00:00<00:18, 233477.25it /s] 1%|1 | 65536/4422102 [00:00<00:18, 232894.04it /s] 3%|2 | 131072/4422102 [00:00<00:12, 339241.27it /s] 5%|5 | 229376/4422102 [00:00<00:08, 480773.14it /s] 10%|9 | 425984/4422102 [00:00<00:04, 811302.76it /s] 20%|## | 884736/4422102 [00:00<00:02, 1643749.67it /s] 39%|###9 | 1736704/4422102 [00:00 <00:00, 3085506.46it /s] 79%|#######8 | 3473408/4422102 [00:01<00:00, 6031981.20it /s] 100%|##########| 4422102/4422102 [00:01<00:00, 3921463.52it /s]
48
+ 0%| | 0/4422102 [00:00<?, ?it/s] 1%| | 32768/4422102 [00:00<00:20, 209311.82it /s] 1%|1 | 65536/4422102 [00:00<00:20, 208198.88it /s] 3%|2 | 131072/4422102 [00:00<00:14, 303322.26it /s] 5%|5 | 229376/4422102 [00:00<00:09, 431002.39it /s] 10%|9 | 425984/4422102 [00:00<00:05, 726735.34it /s] 20%|## | 884736/4422102 [00:00<00:02, 1469897.89it /s] 39%|###9 | 1736704/4422102 [00:01 <00:00, 2761359.22it /s] 79%|#######8 | 3473408/4422102 [00:01<00:00, 5399936.71it /s] 100%|##########| 4422102/4422102 [00:01<00:00, 3500570.56it /s]
49
49
Extracting ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
50
50
51
51
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
52
52
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
53
- 0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 37947762.73it /s]
53
+ 0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 38284179.06it /s]
54
54
Extracting ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
55
55
56
56
Pipeline CS:
@@ -85,23 +85,22 @@ Image Classification
85
85
Pipeline Random Config:
86
86
________________________________________
87
87
Configuration(values={
88
- 'image_augmenter:GaussianBlur: sigma_min': 1.800750044920493,
89
- 'image_augmenter:GaussianBlur: sigma_offset': 0.0008507475449754942,
90
- 'image_augmenter:GaussianBlur: use_augmenter': True,
88
+ 'image_augmenter:GaussianBlur: use_augmenter': False,
91
89
'image_augmenter:GaussianNoise: use_augmenter': False,
92
90
'image_augmenter:RandomAffine: use_augmenter': False,
93
- 'image_augmenter:RandomCutout: use_augmenter': False,
91
+ 'image_augmenter:RandomCutout: p': 0.34114189827681496,
92
+ 'image_augmenter:RandomCutout: use_augmenter': True,
94
93
'image_augmenter:Resize: use_augmenter': False,
95
- 'image_augmenter:ZeroPadAndCrop: percent': 0.3938396231176561 ,
96
- 'normalizer:__choice__': 'ImageNormalizer ',
94
+ 'image_augmenter:ZeroPadAndCrop: percent': 0.17619897373538618 ,
95
+ 'normalizer:__choice__': 'NoNormalizer ',
97
96
})
98
97
99
98
Fitting the pipeline...
100
99
________________________________________
101
100
ImageClassificationPipeline
102
101
________________________________________
103
102
0-) normalizer:
104
- ImageNormalizer
103
+ NoNormalizer
105
104
106
105
1-) preprocessing:
107
106
EarlyPreprocessing
@@ -173,7 +172,7 @@ Image Classification
173
172
174
173
.. rst-class :: sphx-glr-timing
175
174
176
- **Total running time of the script: ** ( 0 minutes 7.321 seconds)
175
+ **Total running time of the script: ** ( 0 minutes 7.995 seconds)
177
176
178
177
179
178
.. _sphx_glr_download_examples_20_basics_example_image_classification.py :
0 commit comments