Skip to content

Commit 2faea3f

Browse files
author
Github Actions
committed
Ravin Kohli: add change log for release (#450)
1 parent 1a87024 commit 2faea3f

38 files changed

+444
-361
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading

development/_sources/examples/20_basics/example_image_classification.rst.txt

+11-12
Original file line numberDiff line numberDiff line change
@@ -35,22 +35,22 @@ Image Classification
3535
3636
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
3737
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz
38-
0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 32768/26421880 [00:00<01:52, 235602.90it/s] 0%| | 65536/26421880 [00:00<01:52, 234351.38it/s] 0%| | 131072/26421880 [00:00<01:17, 340594.04it/s] 1%| | 229376/26421880 [00:00<00:54, 483036.36it/s] 2%|1 | 458752/26421880 [00:00<00:28, 898436.87it/s] 3%|3 | 917504/26421880 [00:00<00:14, 1705017.51it/s] 7%|7 | 1867776/26421880 [00:00<00:07, 3360695.16it/s] 14%|#4 | 3702784/26421880 [00:01<00:03, 6451569.09it/s] 26%|##5 | 6750208/26421880 [00:01<00:01, 11225603.32it/s] 37%|###7 | 9863168/26421880 [00:01<00:01, 14590423.72it/s] 49%|####9 | 13008896/26421880 [00:01<00:00, 16972192.00it/s] 61%|###### | 16056320/26421880 [00:01<00:00, 18420560.72it/s] 72%|#######1 | 19005440/26421880 [00:01<00:00, 19207823.64it/s] 84%|########3 | 22085632/26421880 [00:01<00:00, 20031175.65it/s] 95%|#########5| 25231360/26421880 [00:02<00:00, 20738665.14it/s] 100%|##########| 26421880/26421880 [00:02<00:00, 12457424.40it/s]
38+
0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 32768/26421880 [00:00<02:05, 209450.57it/s] 0%| | 65536/26421880 [00:00<02:06, 207572.68it/s] 0%| | 131072/26421880 [00:00<01:27, 300950.17it/s] 1%| | 229376/26421880 [00:00<01:01, 427461.71it/s] 2%|1 | 491520/26421880 [00:00<00:29, 869131.19it/s] 4%|3 | 950272/26421880 [00:00<00:16, 1556559.36it/s] 7%|7 | 1933312/26421880 [00:01<00:07, 3073356.65it/s] 15%|#4 | 3833856/26421880 [00:01<00:03, 5905149.97it/s] 26%|##6 | 6881280/26421880 [00:01<00:01, 10049278.31it/s] 38%|###7 | 9928704/26421880 [00:01<00:01, 12847665.35it/s] 48%|####8 | 12746752/26421880 [00:01<00:00, 14324144.88it/s] 60%|#####9 | 15826944/26421880 [00:01<00:00, 15871843.82it/s] 71%|#######1 | 18874368/26421880 [00:02<00:00, 16872598.82it/s] 83%|########2 | 21856256/26421880 [00:02<00:00, 17403201.35it/s] 94%|#########4| 24838144/26421880 [00:02<00:00, 17815867.41it/s] 100%|##########| 26421880/26421880 [00:02<00:00, 11043343.33it/s]
3939
Extracting ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
4040
4141
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
4242
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz
43-
0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 205829.78it/s] 100%|##########| 29515/29515 [00:00<00:00, 205327.60it/s]
43+
0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 184548.40it/s] 100%|##########| 29515/29515 [00:00<00:00, 184079.42it/s]
4444
Extracting ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
4545

4646
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
4747
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
48-
0%| | 0/4422102 [00:00<?, ?it/s] 1%| | 32768/4422102 [00:00<00:18, 233477.25it/s] 1%|1 | 65536/4422102 [00:00<00:18, 232894.04it/s] 3%|2 | 131072/4422102 [00:00<00:12, 339241.27it/s] 5%|5 | 229376/4422102 [00:00<00:08, 480773.14it/s] 10%|9 | 425984/4422102 [00:00<00:04, 811302.76it/s] 20%|## | 884736/4422102 [00:00<00:02, 1643749.67it/s] 39%|###9 | 1736704/4422102 [00:00<00:00, 3085506.46it/s] 79%|#######8 | 3473408/4422102 [00:01<00:00, 6031981.20it/s] 100%|##########| 4422102/4422102 [00:01<00:00, 3921463.52it/s]
48+
0%| | 0/4422102 [00:00<?, ?it/s] 1%| | 32768/4422102 [00:00<00:20, 209311.82it/s] 1%|1 | 65536/4422102 [00:00<00:20, 208198.88it/s] 3%|2 | 131072/4422102 [00:00<00:14, 303322.26it/s] 5%|5 | 229376/4422102 [00:00<00:09, 431002.39it/s] 10%|9 | 425984/4422102 [00:00<00:05, 726735.34it/s] 20%|## | 884736/4422102 [00:00<00:02, 1469897.89it/s] 39%|###9 | 1736704/4422102 [00:01<00:00, 2761359.22it/s] 79%|#######8 | 3473408/4422102 [00:01<00:00, 5399936.71it/s] 100%|##########| 4422102/4422102 [00:01<00:00, 3500570.56it/s]
4949
Extracting ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
5050

5151
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
5252
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
53-
0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 37947762.73it/s]
53+
0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 38284179.06it/s]
5454
Extracting ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
5555

5656
Pipeline CS:
@@ -85,23 +85,22 @@ Image Classification
8585
Pipeline Random Config:
8686
________________________________________
8787
Configuration(values={
88-
'image_augmenter:GaussianBlur:sigma_min': 1.800750044920493,
89-
'image_augmenter:GaussianBlur:sigma_offset': 0.0008507475449754942,
90-
'image_augmenter:GaussianBlur:use_augmenter': True,
88+
'image_augmenter:GaussianBlur:use_augmenter': False,
9189
'image_augmenter:GaussianNoise:use_augmenter': False,
9290
'image_augmenter:RandomAffine:use_augmenter': False,
93-
'image_augmenter:RandomCutout:use_augmenter': False,
91+
'image_augmenter:RandomCutout:p': 0.34114189827681496,
92+
'image_augmenter:RandomCutout:use_augmenter': True,
9493
'image_augmenter:Resize:use_augmenter': False,
95-
'image_augmenter:ZeroPadAndCrop:percent': 0.3938396231176561,
96-
'normalizer:__choice__': 'ImageNormalizer',
94+
'image_augmenter:ZeroPadAndCrop:percent': 0.17619897373538618,
95+
'normalizer:__choice__': 'NoNormalizer',
9796
})
9897

9998
Fitting the pipeline...
10099
________________________________________
101100
ImageClassificationPipeline
102101
________________________________________
103102
0-) normalizer:
104-
ImageNormalizer
103+
NoNormalizer
105104

106105
1-) preprocessing:
107106
EarlyPreprocessing
@@ -173,7 +172,7 @@ Image Classification
173172
174173
.. rst-class:: sphx-glr-timing
175174

176-
**Total running time of the script:** ( 0 minutes 7.321 seconds)
175+
**Total running time of the script:** ( 0 minutes 7.995 seconds)
177176

178177

179178
.. _sphx_glr_download_examples_20_basics_example_image_classification.py:

development/_sources/examples/20_basics/example_tabular_classification.rst.txt

+12-12
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
134134
.. code-block:: none
135135
136136
137-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f2407c75af0>
137+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f83c94a1970>
138138
139139
140140
@@ -165,20 +165,20 @@ Print the final ensemble performance
165165

166166
.. code-block:: none
167167
168-
{'accuracy': 0.8670520231213873}
169-
| | Preprocessing | Estimator | Weight |
170-
|---:|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
171-
| 0 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,FastICA | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.56 |
172-
| 1 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.38 |
173-
| 2 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,PCA | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
174-
| 3 | None | CBLearner | 0.02 |
175-
| 4 | None | SVMLearner | 0.02 |
168+
{'accuracy': 0.8728323699421965}
169+
| | Preprocessing | Estimator | Weight |
170+
|---:|:-------------------------------------------------------------------------------------------|:-------------------------------------------------------------|---------:|
171+
| 0 | None | CBLearner | 0.5 |
172+
| 1 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,MinMaxScaler,FastICA | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.22 |
173+
| 2 | SimpleImputer,Variance Threshold,MinorityCoalescer,OneHotEncoder,PowerTransformer,Nystroem | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
174+
| 3 | SimpleImputer,Variance Threshold,NoCoalescer,NoEncoder,StandardScaler,PCA | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
175+
| 4 | None | RFLearner | 0.02 |
176176
autoPyTorch results:
177177
Dataset name: Australian
178178
Optimisation Metric: accuracy
179179
Best validation score: 0.8713450292397661
180-
Number of target algorithm runs: 27
181-
Number of successful target algorithm runs: 26
180+
Number of target algorithm runs: 23
181+
Number of successful target algorithm runs: 22
182182
Number of crashed target algorithm runs: 0
183183
Number of target algorithms that exceeded the time limit: 1
184184
Number of target algorithms that exceeded the memory limit: 0
@@ -190,7 +190,7 @@ Print the final ensemble performance
190190
191191
.. rst-class:: sphx-glr-timing
192192

193-
**Total running time of the script:** ( 5 minutes 24.577 seconds)
193+
**Total running time of the script:** ( 5 minutes 27.372 seconds)
194194

195195

196196
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:

development/_sources/examples/20_basics/example_tabular_regression.rst.txt

+11-10
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ Search for an ensemble of machine learning algorithms
125125
.. code-block:: none
126126
127127
128-
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f248d0d5d90>
128+
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f8459f30d90>
129129
130130
131131
@@ -159,19 +159,20 @@ Print the final ensemble performance
159159

160160
.. code-block:: none
161161
162-
{'r2': 0.9407884171054208}
162+
{'r2': 0.9412847640085195}
163163
| | Preprocessing | Estimator | Weight |
164164
|---:|:-------------------------------------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
165-
| 0 | None | CBLearner | 0.44 |
166-
| 1 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.42 |
165+
| 0 | None | CBLearner | 0.46 |
166+
| 1 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.4 |
167167
| 2 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
168-
| 3 | None | LGBMLearner | 0.04 |
168+
| 3 | None | LGBMLearner | 0.02 |
169+
| 4 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
169170
autoPyTorch results:
170-
Dataset name: 59922def-0351-11ed-8824-d5cce4119db9
171+
Dataset name: ba73302f-0375-11ed-8828-9bcdcaaf1ae6
171172
Optimisation Metric: r2
172-
Best validation score: 0.8670098636440993
173-
Number of target algorithm runs: 24
174-
Number of successful target algorithm runs: 22
173+
Best validation score: 0.8669094525651709
174+
Number of target algorithm runs: 22
175+
Number of successful target algorithm runs: 20
175176
Number of crashed target algorithm runs: 0
176177
Number of target algorithms that exceeded the time limit: 2
177178
Number of target algorithms that exceeded the memory limit: 0
@@ -183,7 +184,7 @@ Print the final ensemble performance
183184
184185
.. rst-class:: sphx-glr-timing
185186

186-
**Total running time of the script:** ( 5 minutes 36.793 seconds)
187+
**Total running time of the script:** ( 6 minutes 2.422 seconds)
187188

188189

189190
.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:

development/_sources/examples/20_basics/example_time_series_forecasting.rst.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ Search for an ensemble of machine learning algorithms
150150
151151
.. rst-class:: sphx-glr-timing
152152

153-
**Total running time of the script:** ( 1 minutes 3.199 seconds)
153+
**Total running time of the script:** ( 1 minutes 6.152 seconds)
154154

155155

156156
.. _sphx_glr_download_examples_20_basics_example_time_series_forecasting.py:

development/_sources/examples/20_basics/sg_execution_times.rst.txt

+5-5
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55

66
Computation times
77
=================
8-
**12:11.890** total execution time for **examples_20_basics** files:
8+
**12:43.941** total execution time for **examples_20_basics** files:
99

1010
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:36.793 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 06:02.422 | 0.0 MB |
1212
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:24.577 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:27.372 | 0.0 MB |
1414
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basics_example_time_series_forecasting.py` (``example_time_series_forecasting.py``) | 01:03.199 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basics_example_time_series_forecasting.py` (``example_time_series_forecasting.py``) | 01:06.152 | 0.0 MB |
1616
+----------------------------------------------------------------------------------------------------------------+-----------+--------+
17-
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:07.321 | 0.0 MB |
17+
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:07.995 | 0.0 MB |
1818
+----------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)