Skip to content

Commit a636bb5

Browse files
authored
[FIX] Documentation and docker workflow file (#449)
* fixes to documentation and docker * fix to docker * Apply suggestions from code review
1 parent ff9dcac commit a636bb5

File tree

4 files changed

+30
-7
lines changed

4 files changed

+30
-7
lines changed

.github/workflows/docker-publish.yml

+3-1
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ on:
1111
branches:
1212
- master
1313
- development
14-
- add_docker-publish
14+
- fixes_docker
1515
workflow_dispatch:
1616

1717
jobs:
@@ -24,6 +24,8 @@ jobs:
2424
steps:
2525
- name: Check out the repo
2626
uses: actions/checkout@v2
27+
with:
28+
submodules: recursive
2729

2830
- name: Extract branch name
2931
shell: bash

autoPyTorch/api/time_series_forecasting.py

+21-1
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,7 @@
2828
class TimeSeriesForecastingTask(BaseTask):
2929
"""
3030
Time Series Forecasting API to the pipelines.
31+
3132
Args:
3233
seed (int):
3334
seed to be used for reproducibility.
@@ -253,6 +254,7 @@ def _get_dataset_input_validator(
253254
Y=y_train,
254255
X_test=X_test,
255256
Y_test=y_test,
257+
dataset_name=dataset_name,
256258
freq=freq,
257259
start_times=start_times,
258260
series_idx=series_idx,
@@ -399,7 +401,25 @@ def search(
399401
for each pipeline and results will be available via cv_results
400402
precision (int), (default=32): Numeric precision used when loading
401403
ensemble data. Can be either '16', '32' or '64'.
402-
disable_file_output (Union[bool, List]):
404+
disable_file_output (Optional[List[Union[str, DisableFileOutputParameters]]]):
405+
Used as a list to pass more fine-grained
406+
information on what to save. Must be a member of `DisableFileOutputParameters`.
407+
Allowed elements in the list are:
408+
409+
+ `y_optimization`:
410+
do not save the predictions for the optimization set,
411+
which would later on be used to build an ensemble. Note that SMAC
412+
optimizes a metric evaluated on the optimization set.
413+
+ `pipeline`:
414+
do not save any individual pipeline files
415+
+ `pipelines`:
416+
In case of cross validation, disables saving the joint model of the
417+
pipelines fit on each fold.
418+
+ `y_test`:
419+
do not save the predictions for the test set.
420+
+ `all`:
421+
do not save any of the above.
422+
For more information check `autoPyTorch.evaluation.utils.DisableFileOutputParameters`.
403423
load_models (bool), (default=True): Whether to load the
404424
models after fitting AutoPyTorch.
405425
suggested_init_models: Optional[List[str]]

docs/installation.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ System requirements
1212
Auto-PyTorch has the following system requirements:
1313

1414
* Linux operating system (for example Ubuntu) `(get Linux here) <https://www.wikihow.com/Install-Linux>`_,
15-
* Python (>=3.6) `(get Python here) <https://www.python.org/downloads/>`_.
15+
* Python (>=3.7) `(get Python here) <https://www.python.org/downloads/>`_.
1616
* C++ compiler (with C++11 supports) `(get GCC here) <https://www.tutorialspoint.com/How-to-Install-Cplusplus-Compiler-on-Linux>`_ and
1717
* SWIG (version 3.0.* is required; >=4.0.0 is not supported) `(get SWIG here) <http://www.swig.org/survey.html>`_.
1818

docs/manual.rst

+5-4
Original file line numberDiff line numberDiff line change
@@ -35,10 +35,11 @@ The target validator applies a label encoder on the target column.
3535

3636
For **time series forecasting tasks**, besides the functions described above, time series forecasting validators will also
3737
check the information specify for time series forecasting tasks: it checks
38-
* The index of the series that each data point belongs to
39-
* if the dataset is uni-variant (only targets information is contained in the datasets)
40-
* the sample frequency of the datasets
41-
* the static features in the dataset, i.e., features that contain only one value within each series
38+
39+
* The index of the series that each data point belongs to
40+
* If the dataset is uni-variant (only targets information is contained in the datasets)
41+
* The sample frequency of the datasets
42+
* The static features in the dataset, i.e., features that contain only one value within each series
4243

4344
Time Series forecasting validator then transforms the features and targets into a `pd.DataFrame <https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html>`_
4445
whose index is applied to identify the series that the time step belongs to.

0 commit comments

Comments
 (0)