
Away3D Data format
(AWD) v2.1 Alpha

Last updated: June 7th 2013

This is a work-in-progress draft of the file format specification for the binary (second-generation) Away3D
data format (AWD).

This AWD2.1 Specification is an extension of the AWD2.0 Specification

Any community feedback is welcome at:

● https :// github . com / awaytools
● http :// www . away 3 d . com / forum
● r @ richardolsson . se
● 80 prozent @ differentdesign . de

Please note that this is an incomplete document, in an early pre-release state.

Also note that the tools that are available at https://github.com/awaytools are under development and should
not be expected to conform fully to this specification at any point before it's final release.

All feedback is welcome, but these points are particularly interesting at this time:

● Namespaces: General thoughts on the need for namespaces?
● Material architecture: Any community feedback or wishes for features are welcome.
● Animation architecture: Any community feedback or wishes for features are welcome.
● Command blocks: Any community feedback is welcome.
● Limitations (see Part III): Any part of the format where limits need to be lifted?
● Paths, number of steps per segment? Should it be defined per instance or per path data?

Captions in red mark are things that are not yet supported by the latest AWD2parser in the latest Away3d-
Engine-version (https://github.com/away3d/away3d-core-fp11/tree/dev) yet.

1

https://github.com/awaytools
mailto:80prozent@differentdesign.de
mailto:80prozent@differentdesign.de
mailto:80prozent@differentdesign.de
mailto:80prozent@differentdesign.de
mailto:80prozent@differentdesign.de
mailto:80prozent@differentdesign.de
mailto:r@richardolsson.se
mailto:r@richardolsson.se
mailto:r@richardolsson.se
mailto:r@richardolsson.se
mailto:r@richardolsson.se
http://www.away3d.com/forum
http://www.away3d.com/forum
http://www.away3d.com/forum
http://www.away3d.com/forum
http://www.away3d.com/forum
http://www.away3d.com/forum
http://www.away3d.com/forum
http://www.away3d.com/forum
http://www.away3d.com/forum
http://www.away3d.com/forum
http://www.away3d.com/forum
https://github.com/awaytools
https://github.com/awaytools
https://github.com/awaytools
https://github.com/awaytools
https://github.com/awaytools
https://github.com/awaytools

Table of Contents
Part I : Introduction

What is AWD ?

What is Away 3 D ?

AWD Design intentions

What about old - school AWD ?

How to read this document

For encoder implementers

For parser implementers

Terminology

AWD Document

Block

Field

Element

Vector

Part II : File format specification

Top - level structure of an AWD document

File header

Flags

File body

Streaming AWD

Compression

ZLIB / Deflate compression

LZMA compression

Field types and special values

Storage - Precision

Field type identification

Numbers

Endianness

Integers

Floating - point numbers

Booleans and true / false values

Byte arrays

Strings

ConstString

VarString

Lists

2

ConstList

VarList

Vectors and matrices

N - dimensional vector

MxN matrix

Addresses

Colors

Attributes

Attribute lists

Numeric attributes (“ properties ”)

Text attributes (“ user attributes ”)

TypedPropertiesLists

TypedProperties - IDs

References and null values

The Data Block concept

Anatomy of a block

Block IDs and addressing

Block namespaces

Block types

Geometry blocks

TriangleGeometry (ID 1)

Sub - geometry

Data streams

Content structure of vertex positions , vertex normals , and vertex tangents data
streams

Content structure of face index data streams

Content structure of UV coordinate data streams

Content structure of Joint index and weight streams

PrimitiveGeometry (ID 11)

PlaneGeometry (Primitve - Type = 1)

CubeGeometry (Primitve - Type = 2)

SphereGeometry (Primitve - Type = 3)

CylinderGeometry (Primitve - Type = 4)

ConeGeometry (Primitve - Type = 5)

CapsuleGeometry (Primitve - Type = 6)

TorusGeometry (Primitve - Type = 7)

Scene object blocks

Scene (ID 21)

3

Container (ID 22)

MeshInstance (ID 23)

Skybox (ID 31)

Light (ID 41)

Light source types

Light Properties

Shadow Mapper

DirectionalShadowMapper (ShadowMapperID = 1)

NearDirectionalShadowMapper (ShadowMapperID = 2)

CascadeShadowMapper (ShadowMapperID = 3)

CubeMapShadowMapper (ShadowMapperID = 4)

Camera (ID 42)

Lens

PerspectiveLensMethod (methodID = 5001)

OrthographicLensMethod (methodID = 5002)

OrthographicOffCenterLensMethod (methodID = 5003)

TextureProjector (ID 43)

LightPicker (ID 51)

Material blocks

SimpleMaterial block (ID 81)

Material types

Material properties

Shading Methods

AmbientMethods

EnvMapAmbientMethod (methodID = 1)

DiffuseMethods

GradientDiffuseMethod (methodID = 52)

WrapDiffuseMethod (methodID = 53)

LightMapDiffuseMethod (methodID = 54)

CellDiffuseMethod (methodID = 55)

SubsurfaceScatteringDiffuseMethod (methodID = 56) - not implemented in
AwayBuilder atm

SpecularMethods

CellSpecularMethod (methodID = 103)

FresnelSpecularMethod (methodID = 104)

NormalMethods

HeightMapNormalMethod (methodID = 151) - not available in AwayBuilder
atm

4

SimpleWaterNormalMethod (methodID = 152)

ShadowMapMethods / EffectMethods

ShadowMapMethodBlockMethod (methodID = 52) /

EffectMethodBlockMethod (methodID = 52)

BitmapTexture block (ID 82)

CubeTexture block (ID 83)

SharedMethod - Block (ID 91)

EffectMethods

ColorMatrixMethod (methodID = 401)

ColorTransformMethod (methodID = 402)

EnvMapMethod (methodID = 403)

LightMapMethod (methodID = 404)

ProjectiveTextureMethod (methodID = 405)

RimLightMethod (methodID = 406)

AlphaMaskMethod (methodID = 407)

RefractionEnvMapMethod (methodID = 408)

OutlineMethod (methodID = 409)

FresnelEnvMapMethod (methodID = 410)

FogMethod (methodID = 411)

ShadowMapMethod - Block (ID 92)

ShadowMapMethods

CascadeShadowMapMethod (methodID = 1001)

NearShadowMapMethod (methodID = 1002)

FilteredShadowMapMethod (methodID = 1101)

DitheredShadowMapMethod (methodID = 1102)

SoftShadowMapMethod (methodID = 1103)

HardShadowMapMethod (methodID = 1104)

Animation blocks

Skeleton (ID 101)

Skeleton joint

SkeletonPose (ID 102)

Skeleton pose joint transform

SkeletonAnimation (ID 103)

Skeleton animation frames

MeshPose (ID 111) / MeshPoseAnimation (ID 112)

Mesh Animation Properties

Mesh Animation State

5

Streamdata

Parsing Style

AnimationSet (ID 113)

Animation Properties

Animator (ID 122)

SkeletonAnimator (type = 1)

UVAnimation (ID 121)

Miscellaneous blocks

Command Block (ID 253)

Namespace blocks (ID 254)

Meta - data blocks (ID 255)

Part III : Using AWD

Official AWD tools

AWD SDK

The libawd library for C ++

PyAWD - AWD for Python

Official importer / exporter implementations

Extending the AWD format

User attributes

User blocks

Namespaces in AWD

Using the namespace block

Picking a namespace identifier

Parsing an AWD document

Handling block references

Handling unrecognized elements

Parsing extended AWD documents

AWD Limitations

General limitations

AWD data type limitations

Geometry limitations

AWD Structure examples

6

Part I: Introduction
This document defines the Away3D data format (AWD) created by the Away3D team for use as an exchange
format between any conforming exporter on one end and mainly the Away3D engine (but also any other
conforming parser) on the other.

An AWD file generated according to the rules and structure defined in this document is guaranteed to be
successfully parsed by the Away3D runtime AWD importer and any other conforming parser.

What is AWD?
AWD is a binary file format for 3D scenes, objects and related data. It's main use is with the Away3D engine.
The file format specification (this document) and a set of tools for working with AWD files are maintained by
the Away3D development team.

What is Away3D?
Away3D is a real-time 3D engine designed for ActionScript 3 and the Adobe Flash Platform. It is free and
open-source and can be downloaded from www.away3d.com. See the website for more information.

AWD Design intentions
AWD was created as a transfer format with the goal of having a one-to-one relationship between file format
features and the engine features of Away3D. This is to be compared with some file formats that do not
support all the features that Away3D supplies, and other formats which are much too verbose for the
purpose of using them with Away3D.

In addition to this goal, AWD has been designed to be web and Flash friendly, meaning it needs to meet
tough file size requirements, while not being too expensive to parse. Focus is on parsing performance over
generation performance.

The main goals of AWD and reasons for creating it are:

● Support all the features of Away3D so that an entire Away3D scene can be transferred using AWD,
but don't jump through hoops trying to be more than that.

● Provide a web-friendly format keeping in mind that AWD files will need to be transferred over the
Internet as part of a user experience, meaning they should be as small as possible while at the same
time minimizing the impact on parsing performance and time.

● Be extendable. Away3D is a constantly evolving engine, and the supporting file format needs to be
able to keep up the pace. Furthermore, it should be possible for AWD users to extend the format
without breaking conformity with the format specification.

● Be backwards (and forwards) compatible by defining a solid base format, and allowing for extension
by well defined rules. A parser that does not understand a particular file format feature should be
able to ignore it and an evolution of the file format should not have to change the base format in such
a way that older parsers can no longer follow the rules they know.

What about old-school AWD?
The previous incarnation of AWD, which was a plaintext format, is being deprecated with the introduction of
this binary revision. The requirements of file formats used in Flash 3D going forward promote the use of
compressed binary formats over ASCII-based files, which was a big factor in the decision to create this
binary format.

What's described in this specification should be regarded as the current-generation AWD format, and used
whenever possible.

7

How to read this document
This document has been divided into three sections, with the first section being an introduction to the file
format, the Away3D engine and this document. The second section contains a detailed specification of all
elements in the AWD file format. The third section describes how to use the AWD format, e.g. to create an
encoder or a decoder or extend the file format for a particular use-case.

For encoder implementers
Encoder implementers should read the entire document paying extra attention to the structure tables for all
blocks and primitive data types in Part II. The section called "Official AWD tools" might also contain
information that is relevant to encoder implementers, including information about the official AWD SDK which
can ideally be used to create exporters.

Whenever the expressions SHOULD or SHOULD NOT are used in a context that describes the structure of
an AWD file or the behavior of an encoder, the encoder is encouraged to comply but not required to do so.

Whenever the expressions MUST or MUST NOT are used in a context that describes the structure of an
AWD file or the behavior of an encoder, the encoder is required to comply or it can not be regarded as
conforming to the AWD specification.

For parser implementers
Parser implementers should read the entire document paying extra attention to the structure tables for all
blocks and primitive data types in Part II, as well as the section "Parsing an AWD document" in Part III. The
section called "Official AWD tools" might also contain information that is relevant to parser implementers,
including information about the official AWD SDK which can ideally be used to aid parsing of AWD files.

Whenever the expressions SHOULD or SHOULD NOT are used in a context that describes the structure of
an AWD file or the behavior of a parser, the parser is encouraged to comply but not required to do so.

Whenever the expressions MUST or MUST NOT are used in a context that describes the structure of an
AWD file or the behavior of a parser, the parser is required to comply or it cannot be regarded as conforming
to the AWD specification.

For those looking to extend the format

A general understanding of AWD is necessary and can be obtained by reading Part I of this document and
skim through Part II, paying extra attention to the sections called "The Top-level structure of an AWD
document" and "The data block concept".

After that, the main focus should be reading the Part III section called "Extending AWD" and sections
referenced therein.

Terminology
AWD Document
Used as an ambiguous term to refer to either an AWD stream (e.g. over a network) or a logical AWD file (e.g.
on a hard drive.) Essentially any data beginning with an AWD header is considered an AWD document.

Block
Blocks are the top-level containers of data. They occur in a sequential list in the file data body. See the
section "The Data Block concept" for more information.

8

Field
Fields are the smallest data elements defined by the AWD specification. They are a single logical chunk of
data, such as an integer, float or a non-POD element such as a matrix or string as defined by this document.

Element
The term “element” is used to refer to any logical part of the file, be it a block or a field or a structured (and
often recurring) sequence of fields.

Vector
The term "vector" when used in an AWD context refers to a vector according to the mathematical definition,
e.g. a position in N-dimensional space (where N is the length of the vector.) Arrays (which are sometimes
called "vectors" in other contexts) are called lists in the AWD context.

Part II: File format specification
Top-level structure of an AWD document

The AWD document always begins with an uncompressed file header with meta-data, which is followed by
an optionally compressed file body, containing the actual data.

Offset Size Type Description

0 11 File header See section File header

11 Variable List of blocks See section File body

Table 1: AWD top-level structure

File header
The header defines which version of the AWD format specification a file conforms to, as well as the algorithm
used to compress the data body, if any, and configuration flags. Using a “Magic string”, it identifies itself as
an AWD file.

Offset Size Type Description

0 3 ConstString Magic string, “AWD”

3 1 uint8 Version number (major version.)

4 1 uint8 Revision number (minor version.)

5 2 uint16 Flags (two-byte bitflag, see separate table.)

9

7 1 uint8 Compression type.

0: Uncompressed

1: File-level ZLIB

2: File-level LZMA

8 4 uint32 Compressed body length in bytes. Used for
integrity check. Ignored if streaming.

Table 2: AWD header structure

Flags
The flags field is a two-byte bitflag field where each bit is a boolean (0=false, 1=true) that defines a
configuration parameter for the entire file. The meaning of each bit is defined and described in the table
below.

Bit Value Name Description

00 0x0001 Streaming Defines whether this file should be treated as a
streaming file. If this bit is set, it means that the
file is streaming and that more blocks can be
expected even after the file appears to end.

01 Global-Matrix-Storage-Precision Only used if Bit 04 is not set (is false)

02 Global-Geometry-Storage-
Precision

Only used if Bit 04 is not set (is false)

03 Global-Properties-Storage-
Precision

Only used if Bit 04 is not set (is false)

04 Use Storage-Precision per Block Decides if Storage-Precision is defined per file,
or per block

05 -

15

Unused Unused in this version of the format.

Table 3: AWD header flag bits

File body
The file body data is a sequence of any number of data blocks, where each data block has the same top-
level format, with fields defining block type and size (See the section called "The data block concept" for
details).

The file body in it's entirety can optionally be compressed using one of the supported compression
algorithms. Body blocks can also be added to an existing AWD document over time, via a mutable media like
a network socket. This is referred to as streaming.

10

Streaming AWD
The AWD file format has been designed with the possibility of streaming and progressive loading in mind.
Block references are required to always point backwards (to a previously declared block) which means that a
parser can be certain when encountering a reference that it is not being made to a currently unknown block
even though the entire file has not yet been downloaded.

To alert a parser that a document is streaming (and hence that the parser should continue reading data
when available until the stream is closed by the environment) the “streaming” flag bit must be set in the flags
field in the header.

Streaming AWD files do not support compression since parsing needs to be possible even before the entire
document has finished loading (if it ever does.) Future versions of the format may support per-block
compression.

Compression
The body part of an AWD file can optionally be compressed using one of the two supported compression
algorithms, ZLIB (deflate) and LZMA. Which algorithm is used is defined by the compression type field in the
document header.

If a parser does not recognize the algorithm defined in the compression type header field, the file can not be
read by that parser, which should exit with an error status.

ZLIB/Deflate compression
The ZLIB/Deflate compression algorithm is used by the very popular ZIP and GZIP compression file formats
and provides a fairly efficient compression at low decompression performance costs. Deflate compression is
natively supported by many environments, including Flash Player. This means that in many cases (one of
which is indeed the Flash Player) ZLIB compression is an excellent trade-off between file size and
decompression speed. In Flash Player particularly, native decompression of ZLIB/Deflate can be several
orders of magnitude faster than decoding other formats using implementations in ActionScript 3.

In a ZLIB compressed AWD file, the body is the exact output from ZLIB including heading and trailing meta-
data (checksum), which means it can be handed straight to a ZLIB decoding (inflation) machine.

LZMA compression
LZMA is an extremely efficient compression algorithm and is part of the popular Windows 7zip compression
utility. However, because native implementations are rare, and none exists for Flash Player, decompression
often means more work and is often slower than when using ZLIB.

The LZMA compression is very configurable, and hence requires some meta-data to be stored for the
compressed body data to be correctly decompressed. The first nine bytes of the body data in an LZMA-
compressed AWD file define the size of the decompressed body as an unsigned 32-bit integer, followed by
the LZMA properties encoded as per the LZMA standard. The below table describes the body structure of an
LZMA-compressed AWD file.

Offset Size Type Description

0 4 uint32 Length of decompressed body.

4 5 ByteArray LZMA properties encoded as defined in the
LZMA SDK.

9 Variable ByteArray Compressed body data.

Table 4: Structure of an LZMA-compressed AWD body

This structure allows for easy decompression using the LZMA SDK LzmaDecode() function, without the need
of dynamic buffer allocation and chunk-for-chunk decompression of the stream.

11

Field types and special values

In this specification are recurring references to a number of both POD and complex (aggregate) data types.
This section details the format of these data types and how they are parsed.

Storage-Precision

Storage precision is defined in the FileHeader-BitFlags (flag01,flag02, flag03, flag04) and in the
BlockHeader-BitFlags (flag00, flag01, flag02)

Flag04 of the FileHeader-BitFlags defines if the 3 Storage-Precision-Parameter should be used global for a
file or if they should be overwritten by the BlockHeader-BitFlags.

The Storage-Preciosion per File is not really needed anymore, since the BlockHeader-BitFlag containing the
Storage-Precision per Block is is stored, parsed and reserved for this values anyway. It only exists for
legacy reasons(It was allready defined in AWD2.0). But since the StoragePrecision has never been actually
implemented in the Parsers/Encoder before, we really dont need it anymore.

Storage-Precision is defined for 4 different typ of AWD-Data

FIleHeader BlockHeader used for Name in this doc true false

01 00 used for all Matrix3d and
Properties that descripe scene-
positions

MatrixSP float64 float32

02 01 used for all Numbers stored to
define (Sub)Geometrys

GeometrySP float64 float32

03 02 used for all Numbers of AWD-
Properties, that are not used to
describe scene-positions

PropsSP float64 float32

-- -- Storage-Precision for
UserAttributes (Numbers) is stored
with each Attribute

Endianness
Storage precision is defined in the FileHeader-BitFlags (flag01,flag02, flag03, flag04) and in the
BlockHeader-BitFlags (flag00, flag01, flag02)

Flag04 of the FileHeader-BitFlags defines if the 3 Storage-Precision-Parameter should be used global for a
file or if they should be overwritten by the BlockHeader-BitFlags.

The Storage-Preciosion per File is not really needed anymore, since the BlockHeader-BitFlag containing the
Storage-Precision per Block is is stored, parsed and reserved for this values anyway. It only exists for
legacy reasons(It was allready defined in AWD2.0). But since the StoragePrecision has never been actually
implemented in the Parsers/Encoder before, we really dont need it anymore.

12

Field type identification
In contexts where types can vary (e.g. user attributes, see below) the data type is identified by an 8bit integer
ID. This 8bit field, when referred to in structure tables, is simply called type.

ID Type Category

1 int8 Numeric

2 int16

3 int32

4 uint8

5 uint16

6 uint32

11 float32

12 float64

21 bool Derived numeric

22 color

23 BlockAddr

31 ConstString Array types

32 ByteArray

41 Vector2x1 Math types

42 Vector3x1

43 Vector4x1

51 Matrix3x2

52 Matrix3x3

53 Matrix4x3

54 Matrix4x4

Table 5: Field data type identifiers.

13

Numbers

Endianness
All numeric values in AWD are little-endian. Numeric values should never be encoded as big-endian in AWD.
This means that to read a multi-byte numeric field the parser has to wait until the entire field has been loaded
(since the MSB is the last one.) However, it also has performance gains on most modern platforms which are
natively little-endian, and thus able to read entire streams of little-endian numeric data in a single operation.
On these systems the same streams can then be sent of to the GPU without any marshaling, which
constitutes a big optimizations particularly in high-level languages like ActionScript (Flash) and JavaScript
(WebGL).

Integers
All fields that contain integers are defined as either int or uint (for unsigned integers) regardless of the size of
their C representation. They are never referred to as "long", "short", "word" or any of the typical platform
names. Instead, to remain platform-agnostic, a numeric suffix defines the width in bits. The following integer
types can be used in AWD:

● int8 and uint8
● int16 and uint16
● int32 and uint32

Floating-point numbers
Non-integer numeric fields are referred to as floats, floating point numbers. Like with integers, a numeric
suffix explicitly defines the precision. What in C are usually referred to as doubles are simply referred to as
floats with a greater bit-width:

● float32
● float64

Float values must always be encoded as IEEE-754 compliant floating point numbers.

Booleans and true/false values
Booleans are encoded as a single byte where any non-zero value indicates a true state. False must hence
be encoded as 0 (all eight bits equal zero) and any other value will be interpreted as true.

Offset Size Type Description

0 1 uint8 Boolean encoded as an 8 bit integer.

Any non-zero value indicates true.

Byte arrays
Whenever a byte array is mentioned, this is a reference to a sequence of arbitrarily formatted bytes. The
context defines what the exact format of the content is and it's length, but usually the exact structure is not
relevant to AWD as a format (e.g. with embedded images) and should be treated by a separate module (e.g.
a JPEG decoder.)

Strings
Two types of character strings are used in AWD, ConstString and VarString. Both comprise an array of UTF-
8 characters without BOM, the only difference being that whereas the length of a ConstString is always
defined by the context, a VarString can have variable length in any given context.

14

ConstString

Offset Size Type Description

0 Context-sensitive Byte array String content as UTF-8 without BOM.

VarString
A VarString can have any length between 0 and 65536 bytes. The length is defined by the first two bytes in
the VarString field, which are to be interpreted as a 16 bit unsigned integer.

Offset Size Type Description

0 2 uint16 String length

2 Variable Byte array String content as UTF-8 without BOM.

Lists

ConstList
TBD

VarList
TBD

Vectors and matrices
Vectors and matrices are serialized as a one-dimensional list of floating point numbers. The context defines
the size of the vector or matrix. The precision (32 or 64 bits per float) for vectors and matrices is defined per-
block in the block header flag field.

N-dimensional vector
N-dimensional vectors are encoded as a 1xN matrix.

MxN matrix
Matrices are encoded as a column-major (col0, col1, ... colN) serial list of 64-bit floating point numbers. For a
matrix with N columns and M rows, the total size of resulting byte array is MxNxP bytes, where P is either 4
or 8 depending on the precision used.

Addresses
Fields referred to as BlockAddr fields are numeric block addresses, usually to a previous block in the file
(and sometimes to the block itself, but never to a later occurring block). These are always 32-bit unsigned
integers, where a null value is allowed (and means no block is referenced.)

15

Colors
Whenever a color is stored in an AWD file, it is represented by four 8-bit values, defining the red, green, blue
and alpha channels respectively. This means that a color is always 32 bits long in total, and that every
channel can have 256 possible values.

Attributes
The AWD format is designed to be extendable, both by future versions of AWD and by user applications.
Blocks in an AWD file can have attributes that can either be user-defined (e.g. for use in a game or physics
engine) or defined by the AWD format specification.

There are two types of attributes, differentiated and referenced by their key/name types:

● Numeric attributes (sometimes called "properties") are used mainly by the file format itself to
maintain forward compatibility. The key is a 16-bit unsigned integer IDs, which makes it very
compact while allowing for 65535 values. It's however not human-readable so the meaning of a key
ID needs to be established in a contract between encoder and parser, e.g. this document.

● Text attributes (sometimes called "user attributes") are suitable for generator transparency (e.g.
letting the end-user define them straight into the file.) Keys are VarStrings which means that these
attributes are human-readable and more easily human-writable

Attribute lists
Attributes are organized in a flat list, so that parsers that ignore attributes can skip the entire list in one seek
operation. The list is a very simple structure consisting of a 32 bit integer defining it's length, followed by the
serialized list of attributes.

Offset Size Type Description

0 4 uint Attribute list length in bytes.

4 Variable Attribute stream List of attributes

Numeric attributes (“properties”)
Numeric attributes are key/value pairs where the semantics of the key needs to be derived from a mutual
understanding between encoder and parser. Attributes like these are used throughout the AWD format as a
way of defining peripheral values for an element, like the number of segments or dimensions of a cube or
material properties.

Offset Size Type Description

0 2 uint16 Attribute ID (key)

2 4 uint32 Value length

6 Variable Variable Attribute value

The value length field defines the length of the value data portion of the attribute. The type of the value is
defined by the context and attribute ID. For instance, a Primitive's width attribute is always a float64.

16

Text attributes (“user attributes”)
Attributes themselves are key/value pairs with a type field defining the data type of the value. The key
(name) of the attribute is a VarString, as defined above in the section called Strings.

Offset Size Type Description

0 1 uint8 Namespace ID. See "Extending
AWD" for more information.

1 Variable VarString Attribute name (key) as string.

Variable 1 type Attribute type (data type of
value). See section "Field type
identification".

Variable 4 uint32 Value length

Variable Variable Variable Attribute value

At first glance the value length field can seem redundant since the attribute type field implicitly defines the
size of the value. However, the length field allows attributes to store arrays of values (though always
expressed in bytes, not number of elements.) An attribute value of type int32 with length 12 bytes contains
three integer elements. Furthermore, for a parser that does not recognize a particular attribute type, the
length field allows the entire value to be skipped.

Because of the length field, string values do not need to be defined as VarStrings with their own length field,
but can instead be encoded as ConstStrings, the length of which is defined by the attribute value length field.

TypedPropertiesLists
A TypedPropertiesList is used for example to store Shading- /ShadowMap- /and EffectMethods.

It stores a type-ID and a list of properties.

Offset Size Type Description

0 2 uint16 TypedPropertiesList-TypeID

2 Variable NumAttrList property-list

Variable Variable UserAttrList User properties for method

The TypePropertiesList-TypeID is defined by the context the TypePropertiesList is used in.

Please look into the specification of Shading- / ShadowMap- /and EffectMethods for more information.

All TypedProperetiesLists are using the same set of Properties-IDs.

As shown in the next Table, for every Value-Type, 100 IDs are reserved.

If there will be a need for more IDs per Value-Type, this table can easy be extended.

17

TypedProperties-IDs
ID Type

1-100 BlockAddr

101-200 PropsSP

201-300 uint32

301-400 uint16

401-500 uint8

501-600 String

601-700 Color

701-800 Bool

801-900 Matrix(list of MatrixSP)

References and null values
In cases where null values can exist (such as references to other blocks) Null is represented by zero, which
also means it can be interpreted as false if evaluated as a boolean. This also means that in cases where Null
needs to be treated as a special case (i.e. block references, namespace handles) zero is not a valid value
but will be interpreted as Null.

The Data Block concept
The uncompressed file body is a flat sequence of "data blocks" that adhere to a pre-defined structure. The
first fields in a block are required to be the same for any type of block, and are referred to as the block's
header. The type and length of a block is defined by these fields, allowing full forward-compatibility between
an extended AWD file and an unaware parser, which can determine whether a block type is known and if not
skip that block.

Blocks can reference other blocks using their numeric 32-bit IDs. References are required to always be
made backwards, meaning that a block can not reference a target block that is defined later in the document
than the referring block. This is to speed up parsing and prevent problems with streaming AWD documents
and should not cause any troubles in most realistic use-cases.

Anatomy of a block
All data blocks share a couple of characteristics. First, they all begin with a block header which specifies the
block ID, type, and length. This must be read by all parsers to decide whether a block can be parsed or
should be skipped (by seeking forward the number of bytes specified in the length field.)

Offset Size Type Description

0 4 BlockAddr Block ID

4 1 uint8 Block namespace handle.

5 1 uint8 Block data type ID.

18

See table in the “Blocks” section of this document.

6 1 uint8 Flags (see separate table.)

7 4 uint32 Block data size in bytes.

Table 6: Block header

Bit Value Name Description

01 Matrix-Storage-Precision Only used if Header-Flag-Bit 04 is set to true

02 Geometry-Storage-Precision Only used if Header-Flag-Bit 04 is set to true

03 Properties-Storage-Precision Only used if Header-Flag-Bit 04 is set to true

04 Compression Defines if Block is compressed

05 LZMA-Compression Only used if bit 04 is set

Table 7: Block flags

The body of a block varies and can theoretically be anything. Generally, the top-level structure of a block
usually resembles the following, including the already mentioned header:

Block header: 11 bytes structured according to the table above, defining block ID, namespace, type and
length.

● Basic required values: a static condensed list of value-only fields where the order and semantics are
defined explicitly by the AWD file format specification and where every value is required.

● Optional properties: a dynamic list of key/value pairs defined by the AWD file format specification.
See the section “Numeric Attributes” for more info.

● Sub-structure: Lists of logical elements that are hierarchically ordered below this block, but do not
have their own blocks, like lists of joints in a skeleton or sub-meshes in a geometry block.

● User attributes: A dynamic list of arbitrary key/value pairs. These can be used for app-specific data
or meta-data stored by an encoder user directly.

Block IDs and addressing
All blocks have a unique numeric ID, which is used to reference that block from other blocks. The zero block
ID indicates that a block will never be referenced and that a parser hence is not required to keep it in
memory after it is done with it. These blocks are said to be temporary. Blocks with ID greater than zero are
said to be persistent.

Block IDs must be incremented a single step for each block that has an ID. The first persistent block must
have ID 1, and the next persistent block have ID 2. Any temporary blocks (that do not have IDs) do not affect
this sequence of IDs.

Block references must always be made backwards, meaning that the block with ID N can only reference
blocks for which the ID is less than N.

19

Block namespaces
A block needs to exist within a namespace, which defines whether it's a standard AWD block (the Null
namespace) or part of an AWD extension. Namespace handles in block headers and elsewhere are 8-bit
numeric IDs which allows an AWD file to have 255 namespaces on top of the default Null namespace.

All blocks defined in this document belong in the Null namespace, as they are part of the AWD standard
blocks. See the Part III section "Extending AWD" for information about how to use other namespaces when
extending the file format.

Block types
The following list documents the native AWD block types and the type IDs.

All native AWD blocks are required to be defined in the Null namespace.

To access the Assets in Away3d directly after they are parsed, you can listen for the
AssetEvent.ASSET_COMPLETE and check which kind of Asset was received by using the AssetType. You
also can listen for spezial kinds of Assets, using the AssetEvent associated with the AssetType.

(e.g. Event for AssetType.GEOMETRY is AssetEvent.GEOMETRY_COMPLETE)

NS Type ID Block type Category AssetType

0 1 TriangleGeometry Geometry/data AssetType.GEOMETRY

0 11 PrimitiveGeometry Geometry/data AssetType.GEOMETRY

0 21 Scene Scene objects Not supported yet

0 22 Container Scene objects AssetType.CONTAINER

0 23 MeshInstance Scene objects AssetType.MESH

0 31 SkyBox Scene objects AssetType.SKYBOX

0 41 Light Scene objects AssetType.LIGHT

0 42 Camera Scene objects AssetType.CAMERA

0 43 TextureProjector Scene objects AssetType.TEXTURE_PROJECTOR

0 51 LightPicker Light Objects AssetType.LIGHT_PICKER

0 81 StandardMaterial Materials AssetType.MATERIAL

0 82 Texture Materials AssetType.TEXTURE

0 83 CubeTexture Materials AssetType.TEXTURE:

0 91 SharedMethod Method AssetType.EFFECTS_METHOD

0 92 ShadowMethod Method AssetType.SHADOW_MAP_METHOD

0 101 Skeleton Animation AssetType.SKELETON

0 102 SkeletonPose Animation AssetType.SKELETON_POSE

0 103 SkeletonAnimation Animation AssetType.ANIMATION_NODE

20

0 111 MeshPose Animation AssetType.ANIMATION_NODE

0 112 MeshPoseAnimation Animation AssetType.ANIMATION_NODE

0 113 AnimationSet Animation AssetType.ANIMATION_SET

0 121 UVAnimation Animation AssetType.ANIMATION_NODE

0 122 Animator Animation AssetType.ANIMATOR

0 253 Command Misc ? Create a new CommandEvent ?

0 254 Namespace Misc No Asset created

0 255 Meta-data Misc No Asset created

Table 8: Block types, type ID's (with namespaces) and categories

Geometry blocks
TriangleGeometry (ID 1)
TriangleGeometry blocks contain geometry data for common triangle meshes. They are split into sub-
geometries which in turn contain a number of data streams that define the geometry. A triangle geometry
block can be referenced by several mesh instances in a scene, so that the same geometry data is used to
render several objects saving storage space on disk and in memory.

The top-level structure of a mesh data block is defined by this table:

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable VarString Look-up name.

Variable 2 uint16 Number of sub-
geometries.

Variable Variable NumAttrList Geometry properties.

Variable Variable List of SubMesh Sub-meshes

Variable Variable UserAttrList User attributes.

Table 2.1: Top-level structure of a MeshData block

There are no numeric properties for TriangleGeometry blocks in this version of AWD.

Sub-geometry
A sub-geometry is a per-material division of a triangle geometry. Sub-geometries are also used by Away3D
to split meshes into buffers that do not exceed platform buffer size limits. Sub-geometries define their
geometry as data streams, condensed lists of numeric values distinguished by type, e.g. vertex positions,
face indices and UV coordinates.

21

Offset Size Type Description

0 4 uint32 Length of sub-mesh (total
length of data streams in
bytes)

4 Variable NumAttrList Sub-mesh properties

Variable Variable List of DataStream Geometry data streams

Variable Variable UserAttrList User attributes.

Table 10: Structure of a MeshData block sub-mesh

A sub-mesh can contain any number of data streams (as long as it does not exceed the size limit inherited
by the 32-bit length field).

Data streams
A data stream is a condensed sequence of geometry data, such as vertex positions, UV coordinates or face
indices. The below table defines the structure of a data stream.

Offset Size Type Description

0 1 uint8 Stream type (see
separate table.)

1 1 uint8 Content data type.

2 4 uint32 Length of data stream in
bytes

5 Variable List of GeometrySP/int16 Data stream contents

Table 11: MeshData data stream structure

ID Stream type

1 Vertex positions

2 Face indices

3 UV coordinates

4 Vertex normals

5 Vertex tangents

6 Joint index

7 Joint weight

Table 12: Stream types, type IDs and content data types for sub-meshes.

The internal structure of the values in a data stream varies between stream types, and are described in the
next sections.

22

Content structure of vertex positions, vertex normals, and vertex tangents data streams

All these streams consist of a flattened serialized list of number triplets, with the general form X1 Y1 Z1 X2 Y2

Z2 ... XN YN ZN. This means that the total number of value items in a stream of one of these types is always a
multiple of three.

Content structure of face index data streams

Face index data streams define triangles as triplets of index integers. The indices refer to vertices defined in
the vertex stream, where index zero refers to the vertex defined by the first triplet in the vertex stream. An
index i in the face index data stream refers to the vertex defined by the three subsequent floating point
numbers starting at index 3i in the vertex stream.

Content structure of UV coordinate data streams

The UV coordinate stream is very similar to the vertex position stream except each item is a two-dimensional
vector which defines a UV pair. This means that the total number of values in a UV coordinate data stream is
always a multiple of two. The UV pair with index i comprises the two subsequent floating point numbers
starting at 2i in the UV stream, and defines the UV coordinate for the vertex defined by the three subsequent
floating point numbers starting at index 3i in the vertex stream.

In some applications, it makes sense to have more than one set of UV coordinates. This can be achieved
simply by including several streams of the UV type in a sub-geometry.

Content structure of Joint index and weight streams

The joint index and joint weight streams are used to bind the vertices of a mesh to a joint in a skeleton. They
must have the same number of elements.

The number of joints that affect a vertex needs to be constant throughout the mesh, which means that the
number of values in these streams are even multiples of the number of vertices in the mesh. For the sake of
example, lets define N as the number of joints per vertex. If N=2, that means that each vertex can be bound
to two joints.

For each vertex in the vertex data stream, N joint weights are stored in the joint weight stream. At the
corresponding index in the joint index stream is a reference to which joint this weight concerns, stored as an
index into the list of joints in the skeleton.

Continuing the example of N=2, consider the following two streams:

Joint indices: 0, 1, 3, 0

Joint weights: 0.6, 0.4, 1.0, 0

The joint weights for the first vertex in the vertex stream are defined by the first two numbers in these
streams (since N=2). The first joint to which this vertex is bound is the one with index 0, and the bind is
weighted at 0.6. The same vertex is also bound to joint 1, for which the weight is 0.4.

The second pair in each stream defines the two bindings for the second vertex of this sub-mesh. In this
example, this vertex is bound to joint 3 which is weighted at 1.0, and also to joint 0. Note however that this
last binding has zero weight, which in practice means that it will be ignored.

The sum of all weights on a vertex must always be 1.0. In this example the first pair has a sum of 1.0 (0.6
and 0.4) and so does the second pair (1.0 and 0.0), and they are thus both correctly formatted.

Weights should also be ordered from largest to smallest, so that any zero weights are always at the end.
This is because the rendering engine might discard any weights after the first zero weight as a performance
optimization. Away3D does this.

Since AWD enforces a constant number of joints per vertex, there can often be cases where it is possible to
bind more joints to a vertex than what is necessary for that vertex. In those cases the index can be set to any
number, and the weight to zero as in the example above.

23

PrimitiveGeometry (ID 11)
Primitive blocks are a type of geometry meta-data block in that it doesn't actually contain any geometry data.
Rather, the meta-data in the block defines the type of primitive and it's properties, and the actual geometry is
re-constructed by the receiving end using these properties.

The primitive block defines a field for the primitive type followed by a numeric attribute list defining properties
such as dimensions, geometric density et c. Like most other blocks, user attributes can be appended to this
block through it's user attribute list.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 variable VarString Look up name

variable 1 uint8 Primitive type (see
separate table.)

variable Variable NumAttrList Primitive properties.

Variable Variable UserAttrList User attributes.

Table 13: Primitive block fields (in addition to common scene object fields).

The type field defines the primitive type according to the following table:

Type ID Primitive type

1 Plane

2 Cube

3 Sphere

4 Cylinder

5 Cone

6 Capsule

7 Torus

Table 14: Primitive types.

Primitives are making use of the same IDs as a Typed-Properties-List.

PlaneGeometry (Primitve-Type = 1)
ID Name Type Default

101 width geometrySP 100

102 height geometrySP 100

301 segmentsW uint16 1

24

302 segmentsH uint16 1

701 yup bool true

702 doubleSided bool false

CubeGeometry (Primitve-Type = 2)
ID Name Type Default

101 width geometrySP 100

102 height geometrySP 100

103 depth geometrySP 100

301 segmentsW uint16 1

302 segmentsH uint16 1

303 segmentsD uint16 1

701 tile6 bool true

SphereGeometry (Primitve-Type = 3)
ID Name Type Default

101 radius geometrySP 50

301 segmentsW uint16 16

302 segmentsH uint16 12

701 yup bool true

CylinderGeometry (Primitve-Type = 4)
ID Name Type Default

101 topRadius geometrySP 50

102 bottomRadius geometrySP 50

103 height geometrySP 100

301 segmentsW uint16 16

302 segmentsH uint16 1

701 topClosed bool true

702 bottomClosed bool true

25

703 yup bool true

704 surfaceClosed bool true

ConeGeometry (Primitve-Type = 5)
ID Name Type Default

101 radius geometrySP 50

102 height geometrySP 100

301 segmentsW uint16 16

302 segmentsH uint16 1

701 closed bool true

702 yup bool true

CapsuleGeometry (Primitve-Type = 6)
ID Name Type Default

101 radius geometrySP 50

102 height geometrySP 100

301 segmentsW uint16 16

302 segmentsH uint16 15

701 yup bool true

TorusGeometry (Primitve-Type = 7)
ID Name Type Default

101 radius geometrySP 50

102 tubeRadius geometrySP 50

301 segmentsR uint16 16

302 segmentsT uint16 8

701 yup bool true

Scene object blocks

26

Scene graph blocks are spatial objects that can be added to a scene graph. They share the same first three
fields, defined below.

Offset Size Type Description

0 4 BlockAddr Parent ID (Numeric).
Reference to a previously
defined scene graph
object.

4 128 4x4 matrix Transform

132 Variable VarString Look-up name.

Table 16: Common fields for all scene blocks.

The subsequent sections of a scene graph block differ between the various block types.

Scene (ID 21)
The scene is a special case of the scene graph blocks. It's the top-level element in the scene graph, and can
not have a parent. Hence, the parent field must always be null (zero) and should be ignored by parsers. In
addition to the common fields that all scene object blocks share, scene blocks only have an empty numeric
attribute list, and any number of user attributes.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable SceneHeader As defined in Table 16.

Variable Variable NumAttrList Scene properties
(unused in this version.)

Variable Variable UserAttrList User attributes.

Table 17: Scene block fields (in addition to common scene object fields).

Container (ID 22)
Containers are objects to which other scene-graph objects can be parented, but that don't have any volume
or visual appearance on their own. Containers like scenes only have an empty numeric attribute list and a
user attribute list with optional content.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable SceneHeader As defined in Table 16.

0 Variable NumAttrList Container properties

Variable Variable UserAttrList User attributes.

Table 18: Container block fields (in addition to common scene object fields).

27

ID Name Type Description Default

1 pivotX MatrixSP 0

2 pivotY MatrixSP 0

3 pivotZ MatrixSP 0

4 visibility uint8 Not really used yet true

Table 26: Container block properties.

MeshInstance (ID 23)
MeshInstance blocks define what is probably the most common item in a scene, mesh objects. The
geometry is defined by a geometry block elsewhere in the file, and can hence be re-used by several mesh
instances.

In addition to the common scene block fields, mesh instances define a reference to the mesh data block, as
well as a numeric property list and user attributes.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable SceneHeader As defined in Table 16.

Variable 4 BlockAddr ID of mesh data block.

Variable 2 uint16 Number of materials

Variable Variable List of BlockAddr Material IDs

Variable Variable NumAttrList Mesh instance properties

Variable Variable UserAttrList Mesh instance user
attributes.

Table 25: MeshInstance fields (in addition to common scene object fields.)

The MeshInstance-Properties includes the Container-properties.

ID Name Type Description Default

5 CastShadows bool If the mesh Instance cast a shadow true

Table 26: MeshInstance block properties.

Skybox (ID 31)
A SkyBox renders a 360° panorama around your scene. The origin of this panorama will always appear to be
the viewers position.

The SkyBox makes use of a CubeTextureBlock, to access the 6 bitmaps it needs.

Offset Size Type Description

28

0 11 BlockHeader As defined in Table 6.

11 Variable VarString Look-up name.

Variable 4 BlockAddr Block-ID of CubeTextureBlock

Variable Variable NumAttrList SkyBox properties (none in this version.)

Variable Variable UserAttrList SkyBox user attributes.

Table 22: Skybox fields

Light (ID 41)
Light blocks represent light-sources in the scene that are used for lighting/shading of objects with compatible
materials.

Light blocks have a type field that defines what kind of light source the block represents, and a numeric
attribute list with lamp properties.

The following is not relevant for AwayBuilder atm, but could be in future versions, and will be relevant for
AWDToolsC4D.

Lights are used by LightPicker-Blocks, so they have to be parsed before this LightPicker.

This restriction excludes the LightPicker-Block of beeing a valid Block for the Scene.graph.

Instead of the local-tranformation matrix, the AWD-exporter should write the global-tranformation-matrix into
the Sceneheader of a light-object. This provides a way to get the light-object-position for a light thats not part
of the (AWD) scene-graph.

The CommandBlock (with action = “PutIntoSceneGraph”) provides a way to put the Light at its correct place
in the SceneGraph.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable SceneHeader As defined in Table 16.

Variable 1 uint8 Light source type.

Variable Variable NumAttrList Light source properties
(see separate table.)

the shadowMapper is
includet as properties.

Variable Variable UserAttrList User attributes.

Table 20: Lamp block fields (in addition to common scene block fields).

Light source types

Type ID Material type

1 Point Light

2 Directional Light

29

The light source properties are defined as a list of numeric attributes, and can contain any of the attributes
defined in this table. Some properties are only used for certain types of light sources.

The ShadowMapper is defined within the Properties.

Light Properties
P = PointLight, D = DirectionalLight

ID Name Type P D Description Default

1 radius PropsSP + - A radius at which the light intensity starts to
decay.

90000

2 falloff PropsSP + - The radius at which the light intensity reaches
zero (objects further from the light-source won't
be affected.)

100000

3 Color color + + Color of the light. 0xffffff

4 Specular PropsSP + + Intensity of specular light. 1.0

5 Diffuse PropsSP + + Intensity of diffuse light. 1.0

7 Ambient-Color color + + 0xffffff

8 Ambient-Level PropsSP + + 1.0

9 ShadowMapper-
Type

uint8 + + defines the type of shadowmapper to use.

if this is !=0, castShadows=false;

0

10 DepthMapSize uint8 + + shadowMapper-property -

Options are [256, 512, 2048]

2048

11 CoverageRatio PropsSP + + shadowMapper-property 0.5

12 CascadesNum uint16 + + shadowMapper-property 3

21 directionX MatrixSP - + The direction of the light (x) 0

22 directionY MatrixSP - + The direction of the light (y) -1

23 directionZ MatrixSP - + The direction of the light (z) 1

24 pivotX MatrixSP + - 0

25 pivotY MatrixSP + - 0

26 pivotZ MatrixSP + - 0

Table 21: Light block properties.

Shadow Mapper
The TypeID of the Shadowmapper is stored as Light-Property 9.

30

The default TypeID is 0 = no ShadowMapper.

If a ShadowMapper is set, (TypeID!=0), light.castShadows is set to true.

Type ID Shadow Mapper type Category

1 DirectionalShadowMapper Mapper for DirectionalLights

2 NearDirectionalShadowMapper Mapper for DirectionalLights

3 CascadeShadowMapper Mapper for DirectionalLights

4 CubeMapShadowMapper Mapper for PointLights

All ShadowMapper-Properties are stored as Light-Properties.

DirectionalShadowMapper (ShadowMapperID = 1)
ID Name Type Description

10 DepthMapSize uint8 Defaults to 2048. Options are [256, 512, 2048]

NearDirectionalShadowMapper (ShadowMapperID = 2)
ID Name Type Description

10 DepthMapSize uint8 Defaults to 2048. Options are [256, 512, 2048]

11 CoverageRatio PropsSP default = 0.5

CascadeShadowMapper (ShadowMapperID = 3)
ID Name Type Description

10 DepthMapSize uint8 Defaults to 2048. Options are [256, 512, 2048]

12 Number of Cascades uint16 Defaults to 3. Options are [1, 2, 3, 4]

CubeMapShadowMapper (ShadowMapperID = 4)
ID Name Type Description

10 DepthMapSize uint8 Defaults to 512. Options are [256, 512, 1024]

Camera (ID 42)
Camera blocks in AWD documents represent any type of camera supported by the format specification. The
type of lens is the only required field in the block, and other properties (e.g. type-specific properties) are
defined in a numeric attribute list.

31

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable SceneHeader As defined in Table 16.

Variable 1 bool make active(not used for now)

Variable Variable uint16 Num of Lists (1 for now)

Variable Variable TypedpropertiesList List of properties (used to
describe lens)(can be more lists
later (cameraController))

Variable Variable NumAttrList Camera-Properties

Variable Variable UserAttrList User attributes.

Table 23: Camera block fields (in addition to common scene object fields.)

Camera-Properties include the Container-Properties.

Lens
A Lens is a typed-property-list.

ID Name Type Description

5001 PerspectiveLensMethod

5002 OrthographicLensMethod

5003 OrthographicOffCenterLensMethod

Table 24: Types of Lenses

PerspectiveLensMethod (methodID = 5001)
ID Name Type Default

101 FOV PropsSP 60

OrthographicLensMethod (methodID = 5002)
ID Name Type Default

101 Projection Height PropsSP 500

OrthographicOffCenterLensMethod (methodID = 5003)
ID Name Type Default

101 minX PropsSP -400

102 maxX PropsSP 400

32

103 minY PropsSP -300

104 maxY PropsSP 300

TextureProjector (ID 43)
Textureprojector is used together with the ProjectiveTextureMethod.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable SceneHeader As defined in Table 16.

Variable 4 BlockAddr The Texture used.

Variable Variable PropsSP aspect-ratio

Variable Variable PropsSP fov

Variable Variable NumAttrList TextureProjectorProperties

Variable Variable UserAttrList User attributes.

Table: TextureProjector block fields (in addition to common scene object fields.)

LightPicker (ID 51)
In Away3d a LightPicker tells a material, by which scene-lights it should be lit.

A LightPicker-Block in AWD is made of a name, and a list of AWD-Block-IDs, pointing to Light-Blocks.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable VarString Look-up name.

Variable 2 uint16 Number lights

Variable Variable List of BlockAddr LightIDs

Variable Variable UserAttrList User attributes.

Table 19: MeshInstance fields (in addition to common scene object fields.)

Material blocks
SimpleMaterial block (ID 81)

33

Simple material blocks represent materials that exist in Away3D already. This means that mere property
values are enough to configure the material (as opposed to custom shader materials which require shader
code to be embedded within the AWD file).

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable VarString Look-up name

Variable 1 uint8 Material type (see
separate table)

Variable 1 uint8 Number of shading
methods.

Variable Variable NumAttrList Material properties (see
separate table.)

Variable Variable List of ShaderMethod List of shader method
elements, the length of
which is defined by the
preceding integer field.

Variable Variable UserAttrList Material user attributes.

Material types

Type ID Material type

1 Color material

2 Texture material

A material can have a addional type-proerty set in the Materialproperties called “spezialID”.

spezialID Material type

0 (=Default) SinglePassMaterial

1 MultiPassMaterial

Material properties

ID Name Type Color

Material
MP Texture

Material
MP Description Default

1 Color color + + - - Color (used only by color
materials)

0xffffff

2 Texture BlockAddr - - + + Reference to texture block (used
only by bitmap materials)

null

3 NormalTexture BlockAddr + + + + NormalTexture null

34

4 spezialID uint8 - - - - 0: SinglePass

1:MultiPass

2:SkyBox

0

5 smooth bool + + + + Default to true true

6 mipmap bool + + + + Default to true true

7 bothSides bool + + + + Default to false false

8 Pre-multiplied bool + + + + Default to false false

9 BlendMode uint8 + + + + [0:NORMAL,1:ADD,

2: ALPHA,8: LAYER,

10: MULTIPLY]

0

10 Alpha + - + - Overall alpha of material. 1.0

11 Alpha blending bool + - + - Defines whether alpha blending
(semi-transparency) should be
enabled for this material.

false

12 Binary alpha
threshold

PropsSP + + + + Defines a cut-off threshold for the
alpha channel when not using
alpha blending. Pixels with alpha
over this value will be fully
opaque, and all other pixels will
be completely transparent.

0.0

13 Repeat bool + + + + Defines whether to repeat this
material over the surface of
meshes for which the UV
coordinates are outside the 0-1
span.

True

14 Diffuse Level PropsSP - - - - may be needed in later versions 1.0

15 Ambient level PropsSP + + + + 1.0

16 Ambient Color color + + + + 0xffffff

17 Ambient texture BlockAddr - - + + null

18 Specular Level PropsSP + + + + 1.0

19 Specular Gloss PropsSP + + + + 50

20 Specular Color color + + + + 0xffffff

21 Specular Texture BlockAddr + + + + null

22 LightPicker BlockAddr + + + + null

Table 29: Dynamic properties for material blocks.

35

Shading Methods
A shading method defines a way that a material's surface is rendered, e.g. with regards to light. Some
methods require special treatment, e.g. diffuse and specular shading methods, and for this reason shading
methods are sorted into different categories.

The Base-Method of a Composite-Method must always be parsed before the Composite-Method.

Type ID Shading method type Category

1 EnvMapAmbientMethod Ambient

51 DepthDiffuseMethod (no properties) Diffuse

52 GradientDiffuseMethod Diffuse

53 WrapDiffuseMethod Diffuse

54 LightMapDiffuseMethod DiffuseComp

55 CellDiffuseMethod DiffuseComp

56 SubSurfaceScatteringMethod DiffuseComp

101 AnisotropicSpecularMethod (no properties) Specular

102 PhongSpecularMethod (no properties) Specular

103 CellSpecularMethod SpecularComp

104 FresnelSpecularMethod SpecularComp

151 HeightMapNormalMethod Normal

152 SimpleWaterNormalMethod Normal

401 ColorMatrix EffektShader

402 ColorTransform EffektShader

403 EnvMap EffektShader

404 LightMapMethod EffektShader

405 ProjectiveTextureMethod EffektShader

406 RimLightMethod EffektShader

407 AlphaMaskMethod EffektShader

408 RefractionEnvMapMethod EffektShader

409 OutlineMethod EffektShader

410 FresnelEnvMapMethod EffektShader

411 FogMethod EffektShader

36

998 ShadowMapMethodBlockMethod ShadowMapMethodBlock

999 EffectMethodBlockMethod EffectMethodBlock

AmbientMethods

EnvMapAmbientMethod (methodID = 1)
ID Name Type Default Description

1 cubeTexture BlockAddr defaultTexture

DiffuseMethods

GradientDiffuseMethod (methodID = 52)
ID Name Type Default Description

1 gradient-texture Blockaddr defaultTexture

WrapDiffuseMethod (methodID = 53)
ID Name Type Default Description

101 warp factor PropsSP 0.5

LightMapDiffuseMethod (methodID = 54)
ID Name Type Default Description

401 blendMode uint8 MULTIPLY options: add / multiply

1 lightMap-texture blockaddr defaultTexture

CellDiffuseMethod (methodID = 55)
ID Name Type Default Description

401 levels uint8 3

101 smoothness PropsSP 0.1

SubsurfaceScatteringDiffuseMethod (methodID = 56) - not implemented in AwayBuilder atm
ID Name Type Default Description

101 Scattering PropsSP 0.2

102 Translucency PropsSP 1

601 Scatter Color color 0xFFFFFF

37

SpecularMethods

CellSpecularMethod (methodID = 103)
D Name Type Default Description

101 cut-off PropsSP 0.5

102 smoothness PropsSP 0.1

FresnelSpecularMethod (methodID = 104)
ID Name Type Default Description

701 BasedOnSurface bool true

101 power PropsSP 5

102 Reflectance PropsSP 0.1

NormalMethods

HeightMapNormalMethod (methodID = 151) - not available in AwayBuilder atm
ID Name Type Default Description

101 World width PropsSP 5

102 World height PropsSP 5

103 World depth PropsSP 5

SimpleWaterNormalMethod (methodID = 152)
ID Name Type Default Description

1 Second Normal map blockaddr defaultTexture

ShadowMapMethods / EffectMethods

ShadowMapMethodBlockMethod (methodID = 52) /

EffectMethodBlockMethod (methodID = 52)
ID Name Type Default Description

1 TargetBlock Blockaddr defaultTexture The id of the MethodBlock

BitmapTexture block (ID 82)

38

The bitmap texture block defines a bitmap, either as an external file or as embedded image data, that can be
referenced and used by other blocks.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable VarString Look-up name

Variable 1 uint8 Image type

0: External

1: Embedded

Variable 4 uint32 Data length

Variable Variable ByteArray or ConstString Image data (JPEG/PNG/ATF-file stream)
or URL to external file.

Variable Variable NumAttrList Texture properties (none in this version.)

Variable Variable UserAttrList Texture user attributes.

Table 27: Texture block fields

CubeTexture block (ID 83)
Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 1 unit8 0: external

1: embed

12 Variable VarString Look-up name

Variable Variable ByteArray or ConstString Image data (JPEG/PNG/ATF-file stream)
or URL to external file.

Variable Variable ByteArray or ConstString Image data (JPEG/PNG/ATF-file stream)
or URL to external file.

Variable Variable ByteArray or ConstString Image data (JPEG/PNG/ATF-file stream)
or URL to external file.

Variable Variable ByteArray or ConstString Image data (JPEG/PNG/ATF-file stream)
or URL to external file.

Variable Variable ByteArray or ConstString Image data (JPEG/PNG/ATF-file stream)
or URL to external file.

Variable Variable ByteArray or ConstString Image data (JPEG/PNG/ATF-file stream)
or URL to external file.

Variable Variable NumAttrList CubeTexture properties (none)

39

Variable Variable UserAttrList CubeTexture user attributes.

Table 28: CubeTexture block fields

SharedMethod-Block(ID 91)
A Shared Method is a Block that contains a Method that can be shared between multiple materials.

In the AWD-Block-Structure it must appear before any materials that is using it.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable VarString Look-up name.

Variable Variable NumAttrList Method

Variable Variable UserAttrList User attributes.

Table 18: Container block fields (in addition to common scene object fields).

EffectMethods
EffectMethods are stored in SharedMethod-Blocks, so they can be accessed by multiple Materials.

ColorMatrixMethod (methodID = 401)
ID Name Type Default

801 matrix ConstList of PropsSP default = identity matrix

ColorTransformMethod (methodID = 402)
ID Name Type Default

101 alphaMultiplier PropsSP 1

102 redMultiplier PropsSP 1

103 greenMultiplier PropsSP 1

104 blueMultiplier PropsSP 1

601 colorOffset color 0x00000000

EnvMapMethod (methodID = 403)
ID Name Type Default

1 cubeTexture BlockAddr DefaultCubeTexture

101 alpha PropsSP 1

40

2 mask BlockAddr Default-Texture

LightMapMethod (methodID = 404)
ID Name Type Default

401 blendMode uint8 default MULTIPLY(10) / other option= ADD(1)

1 texture BlockAddr Default_Texture

ProjectiveTextureMethod (methodID = 405)
ID Name Type Default

401 mode uint8 Default=MULTIPLY options: ADD MIX

1 textureProjector BlockAddr default = null

RimLightMethod (methodID = 406)
ID Name Type Default

601 color color 0xffffff

101 Strength PropsSP 0.4

102 power PropsSP 2

AlphaMaskMethod (methodID = 407)
ID Name Type Default

701 UseSecondaryUV bool false

1 texture BlockAddr Default_texture

RefractionEnvMapMethod (methodID = 408)
ID Name Type Default

1 envMap(CubeTexture
)

BlockAddr Default_Cube_texture

101 RefractionIndex PropsSP 0.1

102 Dispersion R PropsSP 0.01

103 Dispersion G PropsSP 0.01

104 Dispersion B PropsSP 0.01

41

105 Alpha PropsSP 1

OutlineMethod (methodID = 409)
ID Name Type Default

601 OutlineColor color 0x00000000

101 OutlineSize PropsSP 1

701 ShowInnerLines bool true

702 DedicatedMesh bool false

FresnelEnvMapMethod (methodID = 410)
ID Name Type Default

1 envMap BlockAddr Default_Cube_Texture

101 alpha PropsSP 1

FogMethod (methodID = 411)
ID Name Type Default

101 Min-Distance PropsSP 0

102 Max-Distance PropsSP 1000

601 Color color 0x808080

ShadowMapMethod-Block (ID 92)
A ShadowMap is a Block that contains a ShadowMapMethod, and the AWD-ID (for the light it should be
applied to).In the AWD-Block-Structure it must appear after the associated Light-Block, and before any
Material-Block that is using it.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 Variable VarString Look-up name.

Variable 32 Block-Address LightID

Variable Variable NumAttrList Method

Variable Variable UserAttrList User attributes.

42

Table 18: Container block fields (in addition to common scene object fields).

ShadowMapMethods
Type ID ShadowMapMethod Type Category

1001 CascadeShadowMapMethod Composite-Method

1002 NearShadowMapMethod Composite-Method

1101 FilteredShadowMapMethod Methods

1102 DitheredShadowMapMethod Methods

1103 SoftShadowMapMethod Methods

1104 HardShadowMapMethod Methods

CascadeShadowMapMethod (methodID = 1001)
ID Name Type Default

1 baseMethod Method ShadowMapMethodBase (?)

NearShadowMapMethod (methodID = 1002)
ID Name Type Default

1 baseMethod Method ShadowMapMethodBase (?)

FilteredShadowMapMethod (methodID = 1101)
ID Name Type Default

101 Alpha PropsSP 1

102 Epsilon PropsSP 0.002

DitheredShadowMapMethod (methodID = 1102)
ID Name Type Default

101 Alpha PropsSP 1

102 Epsilon PropsSP 0.002

201 Samples PropsSP 5

103 Range PropsSP 1

SoftShadowMapMethod (methodID = 1103)

43

ID Name Type Default

101 Alpha PropsSP 1

102 Epsilon PropsSP 0.002

201 Samples PropsSP 5

103 Range PropsSP 1

HardShadowMapMethod (methodID = 1104)
ID Name Type Default

101 Alpha PropsSP 1

102 Epsilon PropsSP 0.002

Animation blocks
Skeleton (ID 101)
The Skeleton block defines a skeletal hierarchy of joints that can be bound to by any mesh (see the
MeshData block for details on how to bind a mesh to a skeleton.)

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

0 Variable VarString Look-up name

Variable 2 uint16 Number of joints

Variable Variable NumAttrList Skeleton properties (none
in this version.)

Variable Variable List of SkeletonJoint A list of joints

Variable Variable UserAttrList Skeleton user attributes.

Table 30: Structure of a skeleton block.

The skeleton block contains a list of joints which are the "bones" in the skeleton. The internal structure of a
joint in AWD is defined by the next section. There can be virtually any number of joints (limited only by the
16-bit integer defining the number) in a skeleton block, but the receiving engine might have harder
restrictions on how many joints it can handle.

Skeleton joint
The skeleton joint defines a deformable and bindable "bone" in the skeletal hierarchy. The data inside a joint
structure defines it's name and parent-child relationships, as well as the "bind" transform, which describes
the transformational state that the joint should be in when vertices are bound to it.

44

Offset Size Type Description

0 2 uint16 Joint ID

4 2 uint16 Parent joint ID

Variable Variable VarString Look-up name

Variable Variable Matrix4x3 Bind pose transform

Variable Variable NumAttrList Joint properties (none in
this version.)

Variable Variable UserAttrList Joint user attributes.

Table 31: Structure of joints inside a skeleton block

Each joint has an ID, which among other things is used by other joints to define the parent joint. A parent
joint ID of -1 means there is no parent, i.e. that the defining joint is the root. The joint ID is also used to
reference a particular joint from the joint index data stream in geometry blocks for binding.

SkeletonPose (ID 102)
The skeleton pose block defines the transformations for all bones in a skeleton such that the skeleton
assumes a particular static pose. These can then be used to position a mesh (e.g. a character) statically, or
in a frame-by-frame animation using a SkeletonAnimation block (see the next section.)

A pose comprises a list of joint transform structures, which in turn define the transformation for each of the
joints in the skeleton. It also defines the length of said list, and a name.

There is no hard binding between a skeleton pose and a particular skeleton. It's up to the logic of the parsing
party (e.g. a game engine) to apply the pose to a compatible skeleton. This allows for the same poses (and
hence animations) to be used for several different skeletons, as long as they have the same structure.

The below table defines the structure of the SkeletonPose block.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

0 Variable VarString Look-up name

Variable 2 uint16 Number of joint
transformations

Variable Variable NumAttrList Pose properties (none in
this version.)

Variable Variable List of JointTransform A list of joint
transformations

Variable Variable UserAttrList Pose user attributes.

Table 32: Structure of SkeletonPose block.

Skeleton pose joint transform

45

The joint transform element, a list of which is contained within the skeleton pose block, comprises a
transform matrix for a single joint. The order of the joint transform elements within the pose block should be
the same as the order of the joint elements in the skeleton block, that is depth-first incrementally recursive.

The first field of the joint transform element is a boolean which indicates whether there is a transformation
defined for the joint represented by this element. If true, the next field is a 4x4 matrix. If false, there is no
second field and the next piece of data will be the next joint transform (if any.)

Offset Size Type Description

0 1 bool Defines whether joint has
transformation

1 Variable Matrix4x3 Transformation for joint (if
any)

Table 33: Structure of a joint transform element inside a SkeletonPose block.

SkeletonAnimation (ID 103)
Skeleton animation blocks define actual animation of a skeleton as frame-by-frame poses. The term "frame"
is used for a point in time at which an exact pose is defined in the file format. It does not necessarily coincide
with a refresh in the playback engine. Instead, these frames should be regarded as keyframes, and the
actual output during playback be calculated by interpolating two subsequent keyframes.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

0 Variable VarString Look-up name

Variable 2 uint16 Number of frames

Variable Variable NumAttrList Animation properties
(none in this version.)

Variable Variable List of SkelAnimFrame Frames as a list of
skeleton animation frame
structures (see below.)

Variable Variable UserAttrList Animation user attributes.

Table 34: Structure of SkeletonAnimation blocks.

Skeleton animation frames
The frames in a skeleton animation are defined in a list of skeleton animation frame structures, which are
explained in the structure table below. They consist of a reference to a skeleton pose block, as well as a
duration in milliseconds for that frame. This allows for variable-duration frames, which would typically be
interpolated between by the animation engine.

Offset Size Type Description

0 4 BlockAddr ID of skeleton pose block.

4 2 uint16 Duration in milliseconds

Table 35: Structure of SkelAnimFrame elements.

46

MeshPose (ID 111) / MeshPoseAnimation (ID 112)
The MeshPose block defines the Vertex- Animation state of a Geometry .

The MeshPoseAnimationBlock is similar to the MeshPose-Block. The only difference is, that, it contains a
addional list of Animation-States and a additional UINT16 (Number Of Frames/lenght of the addional list +1).

Offset Size Type Description

0 Variable VarString Look-up name

Variable 4 BlockAddr targetGeometryID

Variable 2 uint16 Number of Frames

Variable 2 uint16 Number of Subgeometries

2 uint16 number of streams

2*number of streams uint16 types of streams

Variable Variable NumAttrList Mesh-Animation properties

Variable Variable AnimationState Mesh-Animation-State

Variable Variable AnimationStateList List of addional

Mesh-Animation-States

Variable Variable UserAttrList Animation user attributes.

Table 34: Structure of MeshPose / MeshPoseAnimation Blocks.

Mesh Animation Properties
All Mesh-Animation-properties are optional, so we have a minimal fileSize for the MeshAnimations with
default settings. (you might want to overwrite the settings by code later anyway).

ID Name Type Default

1 Loop bool true

2 StitchFinalFrame bool false

3 useTranlation bool false

4 absolutePositions bool true

5 parsingStyle uint16 Default = 0

0: all verticles saved

1: use vertOffset

2: vector3D + uint32

6 vertOffset List of uint32 0 (can be used if the encoder orders verticles by
unMorphed/Morphed)

47

must be set for each subgeometry

7 parsingStyleFrame bool Default = false.

If true, the parsingStyle-property is expected to be
written in every frame

Mesh Animation State
The Length of Stream and the List of Vertex-position are repeated for each SubGeometry.

Offset Size Type Description

0 2 uint16 Frame Duration

2 (optional) 2 uint16 ParsingStyle

This is only set when “parsingStyleFrame” is true !

variable 4 uint32 Length of all Streams together

Variable Variable variable All Streams

ID Stream type

1 Vertex positions (float32)

2 Vertex positions (float64)

3 Original-Indicies (see parsingStyle 2)

4 UV coordinates (not used yet) (float32)

5 UV coordinates (not used yet) (float64)

6 Vertex normals (not used yet) (float32)

7 Vertex normals (not used yet) (float64)

Streamdata
The Number of Streams and theire Types are defined by the MeshPoseAnimationBlock, because they
should be the same for each frame.

Offset Size Type Description

0 2 uint32 Length of Stream

4 variable variable StreamData

Parsing Style
The ParsingStyle tells the Parser how the StreamData of the Streams have to be interpreted.

48

By setting the MeshPoseBlock-property “parsingStyleFrame” to True, the parsingStyle is not expected to be
the same for all frames. If “parsingStyleFrame” is False, the parsingStyle will not be written in the
MeshAnimationState (the frames).

Style Description

0 (default) The Data of the Stream is expected to be present for each Vert of the SubGeometry

1 The Encoder has ordered the VertBuffer by nonAnimated and animated, and only the data
for the animated verts are stored.

To make this work, the MeshBlock-Property “vertOffset” must be set (for each
SubGeometry). This can only be used if “parsingStyleFrame” is false!

2 Only the data for the animated Verts is stored.

To make this happen, a addional Stream has to be saved (and parsed as first stream)
containing the original-list-Indicies of the animated verts.

The Encoder have to calculate the parsing-style to use, so we end up with the lowest file-size possible.

AnimationSet (ID 113)
An AnimationSet-Block is used to group multiple Animation-Blocks into one AnimationSet-Block.

A AnimationSet-Blocks can be used for all types of Animation-Blocks, but one AnimationSet-Block cannot
contain different types of Animations-Block.

The AnimationSet-Block has no Animationset-type. Its Type is defined by the type of Animation-Blocks it
contains.

Atm the AnimationSet-Block can only be used for SkeletonAnimations and VertexAnimations.

Offset Size Type Description

0 Variable VarString Look-up name

Variable 2 uint16 Number of frames

Variable Variable NumAttrList Animation properties

(not used yet)

Variable Variable List of BlockAddr List of AnimationBlock-
IDs

Variable Variable UserAttrList Animation user attributes

Animation Properties
ID Name Type Default Description

1 jointsPerVerticle uint 4 only used for
SkeletonAnimationSet

49

Animator (ID 122)
A Animator is the object that is used to bind a AnimationSet to a Mesh, and control its playback.

Like the AnimationSet, this AnimatorBlock can be used for any time of Animation.

Offset Size Type Description

0 Variable VarString Look-up name

Variable Variable TypedPropertiesList Type of the Animator and the
type-specific properties

Variable 4 uint32 AnimationSet ID

Variable 2 uint16 Number of TargetsIDs

Variable 4 * Number of TargetsIDs uint32 Target ID

Variable 2 uint16 The Active State of the
AnimationSet (index)

Variable 1 bool autoPlay (default=false)

Variable Variable NumAttrList Animator properties

Variable Variable UserAttrList Animator user attributes

The type field defines the primitive type according to the following table:

Type ID Animator-Type1

1 SkeletonAnimator

2 VertexAnimator (no properties yet)

3 UVAnimator (not used yet)

4 ParticleAnimator (not used yet)

Table 14: Animator-Type

SkeletonAnimator (type = 1)
ID Name Type Default Description

1 skeleton blockaddr must be set

701 used condensed indices bool false

50

UVAnimation (ID 121)
Offset Size Type Description

0 Variable VarString Look-up name

Variable 2 uint16 Number of frames

Variable Variable NumAttrList Animation properties

Variable Variable List of UVAnimFrame UV animation frames

Variable Variable UserAttrList Animation user attributes

Offset Size Type Description

0 24 Matrix3x2 Two-dimensional UV transformation.

24 1 uint16 Duration in milliseconds

Miscellaneous blocks
Command Block(ID 253)
A Command Block is used to execute a action defined by the CommandID. In AWD2.1 the only available
action is: “PutObjectIntoSceneGraph”.

Offset Size Type Description

0 11 BlockHeader As defined in Table 6.

11 1 bool has SceneHeader

12 Variable SceneHeader As defined in Table 16.

(optional)

11 2 uint Number of Commands

0 Variable TypedpropertiesList *
Number of Commands

Command properties

Variable Variable NumAttrList Commandattributes.

Variable Variable UserAttrList User attributes.

Table 18: Container block fields (in addition to common scene object fields).

Type ID Command Type

51

1 Put Object into SceneGraph

2 Copy SceneGraph-Object

Table 14: Command-Types

Command “Put-Object-into-SceneGraph” - Properties
ID Name Type Default Description

1 targetObject BADDR

2 Parent-Object BADDR

Namespace blocks (ID 254)
The namespace block is a block that must exist in any AWD file with user extensions. A namespace block
couples a short numeric "namespace handle" which is unique within the file, with a namespace string
identifier which should be globally unique. To make sure that namespace string identifiers are unique, good
practice is using a URI with a domain that is controlled by the defining party, e.g.
http://www.away3d.com/prefab/awpns for the Prefab3D AWP project format.

The block body itself consists of an 8-bit integer for the numeric ID, and a variable string for the URI/string
identifier, as defined by the below table.

Offset Size Type Description

0 1 uint8 Namespace handle

(Zero is reserved for null namespaces.)

1 Variable VarString Namespace URI/string identifier.

Table 36: Structure of a single namespace definition, multiple of which can occur in a namespace list block.

NOTE: Zero must not be used as a numeric namespace ID. It is reserved for use as a null
reference when a block or user attribute does not have a namespace.

See the section on "Extending AWD" for more information about how to use namespaces.

Meta-data blocks (ID 255)
The meta-data block is something that encoders can optionally include in an AWD document to define meta-
data such as creation date, name and version of encoder et c. Only one meta-data block should exist in an
AWD document, and it should occur at the very start of the block list.

The structure is very simple, comprising only a numeric property list.

Offset Size Type Description

0 Variable NumAttrList Meta-data properties.

52

The properties of a meta-data blocks are defined by the following table.

ID Name Type Description

1 Timestamp uint32 Generation date and time defined as seconds since
the Epoch (00:00, 1/1 1970.)

2 Encoder name ConstString Name of encoder (i.e. the library or tool used to
encode the AWD file, e.g. libawd.)

3 Encoder version ConstString Encoder version.

4 Generator name ConstString Name of generator (i.e. the tool used to create the
content, e.g. Maya.)

5 Generator version ConstString Generator version.

Part III: Using AWD
Official AWD tools
The official AWD tool-chain is a constantly growing set of tools, importers/exporters and programming
language libraries and extensions. This section details the tools available at the time of writing. Visit the AWD
project page on GitHub (https://github.com/awayTools) for the latest information about available AWD
tooling.

AWD SDK
The AWD SDK has been created to aid and greatly simplify the creation of AWD importers and exporters.
Furthermore, it exists to help prevent discrepancies between encoders and decoders. An AWD file that was
encoded using the AWD SDK should be expected to structurally conform to the AWD specification, and the
AWD SDK can be used to reliably decode a conforming AWD file.

Whether the content is logically conforming (e.g. whether the contents of a data stream has been
sequentially ordered in accordance with what the specification dictates) is still up to the encoder
programmer. Below are the modules of the AWD SDK.

For more information on the AWD SDK, how to build it and use it, see the AWD GitHub Project page. Below
is a list of the programming languages supported in the AWD SDK.

The libawd library for C++
The main reference implementation of AWD is the libawd C++ library.

PyAWD - AWD for Python
PyAWD is a Python module for working with AWD files. It's available as a Python binding and object-oriented
wrapper for the C libawd library, or as a standalone python library that does not require libawd to run (but
does not perform as well as the libawd wrapper.)

Official importer/exporter implementations

53

These are importers and exporters that are being officially developed and maintained as a part of the AWD
project, and that are either in a usable state or planned at the time of releasing this document. Please visit
the AWD project page on Google Code for the latest set of importers/exporters, and for links to any known
community implementations.

Vendor/Application Export Import Real-time

Prefab3D Yes Yes No

Blender Yes No No

Autodesk Maya Yes No No

Autodesk 3dsMax Yes No No

AwayBuilder Yes Yes Yes

Maxon Cinema4D Yes Yes No

Extending the AWD format
AWD is user-extendable by the means of user attributes and user blocks. Attributes are a versatile way to
augment an already existing block type, such as a mesh instance or a material, with custom properties. User
blocks on the other hand can be used to add top-level data types to the format, like player spawn points in a
game, force fields in a physics simulator, or a list of configuration settings in an editor.

User attributes
User attributes are key/value pairs with plaintext keys that can be appended to most AWD block types.
These can be utilized by user applications to augment AWD blocks with application-specific properties, such
as physics properties or game settings.

See the Part II section called "Attributes" for more information on how to add user attributes to a block.

User blocks
The term "user block" refers to a block type that is not defined by the AWD file format specification, but rather
by an extending entity (i.e. a file format user.) User blocks share the same block header as any other block,
but must be defined in a non-null namespace to distinguish them from AWD blocks.

Namespaces in AWD
When extending AWD, there is a need to mark those blocks that do not belong to standard AWD as
belonging to some other context, a "namespace". That way the same numeric block type identifier can be
used for both a standard AWD block and a block defined by the user application.

There is also the rare case where a single AWD file has been influenced by several separate encoders in
which two different user attributes have the same key/name. To prevent files like these from being incorrectly
parsed by user-extended parsers, any encoder that extends AWD must use namespaces with user
attributes.

Namespaces serve the purpose of coupling a user attribute or user block with an identifier that is guaranteed
to be unique, such as a URI. The AWD namespaces are inspired by those in XML, where a namespace URI

54

is defined once in a document and any element belonging to that namespace subsequently identifies the
namespace using a shortened ID.

In AWD, the shortened ID is an 8-bit unsigned integer that is defined in a namespace block, and then
referenced in every user attribute and user block.

Using the namespace block
An encoder that extends AWD must insert a namespace block before any user block or block with user
attributes appears in the document. It's good practice to put the namespace block first in the file. See the
section "Namespace block" for the exact structure of this block.

Picking a namespace identifier
A namespace identifier can be any string that fits in a VarString. The main requirement is that it is unique
within the file where it's used, but it lies in the interest of the user application that it is also consistent and
globally unique, so that a user parser can identify blocks belonging to it's namespace. A user application
hosted at example.com could use "http://example.com/awdns" as it's AWD namespace identifier, which can
be assumed to be unique not only in a particular file, but also consistent and universal so that it can be hard-
coded into the custom parser.

If an encoder intends to create a namespace in a file, any existing namespace definitions must be inspected
by the encoder so that an ambiguous identifier is not added (e.g. if the original file was encoded by the same
encoder and already contains user blocks or attributes in the relevant namespace.) Two namespaces within
a document must not have the same numeric handle or string identifier.

Parsing an AWD document
AWD is designed for linear parsing, or even streaming and “block-wise” parsing of such a stream. It should
never be necessary to seek backwards in a file, and unless a particular type of content has not been
implemented in the parser and thus is skipped, even forward seeking is rare.

Handling block references
Because internal block references are always made backwards, node B can only refer to node A if B occurs
after A in the document.

As a block is read, the parser must determine whether to store a reference to it's internal representation of
that block depending on it's ID. If the block ID is zero, this is a promise from the encoder that there will be no
references to this block in the document, so it is not necessary for the parser to hold on to it. However, if the
block ID is greater than zero, the parser should store a reference to it's internal representation of that block in
a lookup table by ID. When any reference is encountered, this lookup table can be used for random access
to the correct block representation by ID.

Using Away3D as an example, when the parser encounters a TriangleGeometry block, it will create a
Geometry instance and store it in a vector with numeric indices. When a MeshInstance occurs with a
reference to this geometry block, an instance of the Away3D Mesh class will be created and it's geometry
property assigned to the previously created Geometry instance. The latter can easily be retrieved from the
lookup vector using the reference ID in the MeshInstance block.

Handling unrecognized elements
Because AWD can be extended both by users and future versions of the format, a conforming parser needs
to be able to deal with blocks that it does not recognize.

55

If a block is encountered that uses an unknown block ID or namespace, the entire block should be skipped
using the size field that is always defined in the common block header. Blocks in unknown namespaces can
always be skipped unless a parser is expecting some kind of user-defined block. A parser library should
delegate user blocks (blocks in unknown namespaces) to the application code so that it's up to the
application logic to decide whether they need to be parsed.

Parsing extended AWD documents
User-defined blocks will always contain a reference to a namespace other than the default Null namespace
(see section on User-defined blocks and Extending AWD). That way a particular user block can be analyzed
and a decision can be made whether it's in a namespace that the parser is expecting, or whether it should be
skipped.

Namespaces must be defined early (usually first) in the file through the use of namespace blocks. From the
content of such blocks, a parser can create a look-up table for namespace identifier strings, and when a
namespace reference occurs determine from the look-up table whether the user block or attribute is in a
namespace which it expects and understands.

Another common way for extension are the user attributes that can be attached to almost any block. As with
user blocks, attributes have a length field, allowing them to be skipped if the attribute key, value type, or the
namespace in which the attribute is defined, is unrecognized. Optionally, if user attributes are concluded to
never be relevant, a parser can skip all attributes belonging to a block using the length field of the attribute
list.

See the section Attributes fore more information about attributes.

AWD Limitations
There are some limitations inherent with the way AWD is designed. The following is a list of such limitations
(per file unless otherwise stated.)

General limitations
Feature Limit Reason

AWD file size (min) 11 bytes Size of header.

AWD file size (max) 4 GB Limited to max value of the body length header field (32
bit unsigned integer.)

Not applicable to streams.

Number of blocks >4 billion 32-bit block address.

Number of namespaces 256 (incl. Null) 8-bit namespace handles.

Block types (per namespace) 256 8-bit block type fields.

Block types (total) 65535 16 bits total for namespace and block types.

Block data length 4GB 32-bit block length field.

56

AWD data type limitations
Feature Limit Reason

Length of VarStrings 65535 single-byte characters, less
multi-byte characters.

16-bit length field.

Number of numeric attributes (per
list)

65535 16-bit ID field

Number of text attributes (per list) >400 million Assuming attribute names with
three bytes/characters and a
single-byte value (e.g. Boolean).
Limited by attribute element length
and 32-bit list length identifier.

Geometry limitations
Feature Limit Reason

Materials/sub-meshes per mesh
or sub-paths per path.

65535 16 bit length field

Mesh vertices >350 million 32 bit stream length field,

12 bytes per vertex (optimized for size.)

Mesh triangles >350 million 32 bit stream length field,

12 bytes per triangle (optimized for size.)

Path quadratic segments >119 million 32 bit stream length field,

12 bytes per point (optimized for size),

3 points per segment.

Path cubic segments >89 million 32 bit stream length field,

12 bytes per point (optimized for size),

4 points per segment.

AWD Structure examples
Below are some examples of simple AWD files to illustrate the structure of an uncompressed file.

The [N] symbol illustrates a link (numeric reference) to another block with the ID N. Even though the
indentation of the lists in these examples might imply a tree structure, such structure only exists logically,
whereas the actual “physical” representation of data in the file is linear, as is the parsing.

Removed temporarily while the format is still in motion.

57

	Part I: Introduction
	What is AWD?
	What is Away3D?
	AWD Design intentions
	What about old-school AWD?

	How to read this document
	For encoder implementers
	For parser implementers
	Terminology
	AWD Document
	Block
	Field
	Element
	Vector

	Part II: File format specification
	Top-level structure of an AWD document
	File header
	Flags
	File body
	Streaming AWD

	Compression
	ZLIB/Deflate compression
	LZMA compression

	Field types and special values
	Storage-Precision
	Field type identification
	Numbers
	Endianness
	Integers
	Floating-point numbers
	Booleans and true/false values
	Byte arrays
	Strings
	ConstString
	VarString

	Lists
	ConstList
	VarList

	Vectors and matrices
	N-dimensional vector
	MxN matrix

	Addresses
	Colors
	Attributes
	Attribute lists
	Numeric attributes (“properties”)
	Text attributes (“user attributes”)
	TypedPropertiesLists
	TypedProperties-IDs

	References and null values

	The Data Block concept
	Anatomy of a block
	Block IDs and addressing
	Block namespaces
	Block types
	Geometry blocks
	TriangleGeometry (ID 1)
	Sub-geometry
	Data streams
	Content structure of vertex positions, vertex normals, and vertex tangents data streams
	Content structure of face index data streams
	Content structure of UV coordinate data streams
	Content structure of Joint index and weight streams

	PrimitiveGeometry (ID 11)
	PlaneGeometry (Primitve-Type = 1)
	CubeGeometry (Primitve-Type = 2)
	SphereGeometry (Primitve-Type = 3)
	CylinderGeometry (Primitve-Type = 4)
	ConeGeometry (Primitve-Type = 5)
	CapsuleGeometry (Primitve-Type = 6)
	TorusGeometry (Primitve-Type = 7)

	Scene object blocks
	Scene (ID 21)
	Container (ID 22)
	MeshInstance (ID 23)
	Skybox (ID 31)
	Light (ID 41)
	Light source types
	Light Properties
	LightPicker (ID 51)
	Shadow Mapper
	NearDirectionalShadowMapper (ShadowMapperID = 2)
	DirectionalShadowMapper (ShadowMapperID = 1)
	CascadeShadowMapper (ShadowMapperID = 3)
	CubeMapShadowMapper (ShadowMapperID = 4)

	Camera (ID 42)
	Lens
	PerspectiveLensMethod (methodID = 5001)
	OrthographicLensMethod (methodID = 5002)
	OrthographicOffCenterLensMethod (methodID = 5003)

	TextureProjector (ID 43)

	Material blocks
	SimpleMaterial block (ID 81)
	Material types
	Material properties

	ShadowMapMethods / EffectMethods
	ShadowMapMethodBlockMethod (methodID = 52) /
	EffectMethodBlockMethod (methodID = 52)

	Shading Methods
	NormalMethods
	HeightMapNormalMethod (methodID = 151) - not available in AwayBuilder atm
	SimpleWaterNormalMethod (methodID = 152)

	SpecularMethods
	CellSpecularMethod (methodID = 103)
	FresnelSpecularMethod (methodID = 104)

	DiffuseMethods
	GradientDiffuseMethod (methodID = 52)
	WrapDiffuseMethod (methodID = 53)
	LightMapDiffuseMethod (methodID = 54)
	CellDiffuseMethod (methodID = 55)
	SubsurfaceScatteringDiffuseMethod (methodID = 56) - not implemented in AwayBuilder atm

	AmbientMethods
	EnvMapAmbientMethod (methodID = 1)

	BitmapTexture block (ID 82)
	CubeTexture block (ID 83)
	SharedMethod-Block(ID 91)
	EffectMethods
	ColorMatrixMethod (methodID = 401)
	ColorTransformMethod (methodID = 402)
	EnvMapMethod (methodID = 403)
	LightMapMethod (methodID = 404)
	ProjectiveTextureMethod (methodID = 405)
	RimLightMethod (methodID = 406)
	AlphaMaskMethod (methodID = 407)
	RefractionEnvMapMethod (methodID = 408)
	OutlineMethod (methodID = 409)
	FresnelEnvMapMethod (methodID = 410)
	FogMethod (methodID = 411)

	ShadowMapMethod-Block (ID 92)
	ShadowMapMethods
	CascadeShadowMapMethod (methodID = 1001)
	NearShadowMapMethod (methodID = 1002)
	FilteredShadowMapMethod (methodID = 1101)
	DitheredShadowMapMethod (methodID = 1102)
	SoftShadowMapMethod (methodID = 1103)
	HardShadowMapMethod (methodID = 1104)

	Animation blocks
	Skeleton (ID 101)
	Skeleton joint

	SkeletonPose (ID 102)
	Skeleton pose joint transform

	SkeletonAnimation (ID 103)
	Skeleton animation frames

	MeshPose (ID 111) / MeshPoseAnimation (ID 112)
	Mesh Animation Properties
	Mesh Animation State
	Streamdata
	Parsing Style

	AnimationSet (ID 113)
	Animation Properties

	Animator (ID 122)
	SkeletonAnimator (type = 1)

	UVAnimation (ID 121)

	Miscellaneous blocks
	Command Block(ID 253)
	Command “Put-Object-into-SceneGraph” - Properties

	Namespace blocks (ID 254)
	Meta-data blocks (ID 255)

	Part III: Using AWD
	Official AWD tools
	AWD SDK
	The libawd library for C++
	PyAWD - AWD for Python
	Official importer/exporter implementations

	Extending the AWD format
	User attributes
	User blocks
	Namespaces in AWD
	Using the namespace block
	Picking a namespace identifier

	Parsing an AWD document
	Handling block references
	Handling unrecognized elements
	Parsing extended AWD documents

	AWD Limitations
	General limitations
	AWD data type limitations
	Geometry limitations

	AWD Structure examples

