Given a circular integer array nums
of length n
, return the maximum possible sum of a non-empty subarray of nums
.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i]
is nums[(i + 1) % n]
and the previous element of nums[i]
is nums[(i - 1 + n) % n]
.
A subarray may only include each element of the fixed buffer nums
at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j]
, there does not exist i <= k1
, k2 <= j
with k1 % n == k2 % n
.
Example 1:
Input: nums = [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: nums = [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: nums = [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: nums = [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: nums = [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1
Constraints:
n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
[Queue] [Array] [Divide and Conquer] [Dynamic Programming] [Monotonic Queue]