-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathmodel.py
361 lines (329 loc) · 17.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import
import logging
from typing import Callable, Union, Optional, List, Dict
import sagemaker
from sagemaker import image_uris, ModelMetrics
from sagemaker.deserializers import NumpyDeserializer
from sagemaker.drift_check_baselines import DriftCheckBaselines
from sagemaker.fw_utils import model_code_key_prefix, validate_version_or_image_args
from sagemaker.metadata_properties import MetadataProperties
from sagemaker.model import FrameworkModel, MODEL_SERVER_WORKERS_PARAM_NAME
from sagemaker.model_card import (
ModelCard,
ModelPackageModelCard,
)
from sagemaker.predictor import Predictor
from sagemaker.serializers import NumpySerializer
from sagemaker.sklearn import defaults
from sagemaker.utils import to_string
from sagemaker.workflow import is_pipeline_variable
from sagemaker.workflow.entities import PipelineVariable
from sagemaker.model_life_cycle import ModelLifeCycle
logger = logging.getLogger("sagemaker")
class SKLearnPredictor(Predictor):
"""A Predictor for inference against Scikit-learn Endpoints.
This is able to serialize Python lists, dictionaries, and numpy arrays to
multidimensional tensors for Scikit-learn inference.
"""
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=NumpySerializer(),
deserializer=NumpyDeserializer(),
component_name=None,
):
"""Initialize an ``SKLearnPredictor``.
Args:
endpoint_name (str): The name of the endpoint to perform inference
on.
sagemaker_session (sagemaker.session.Session): Session object which
manages interactions with Amazon SageMaker APIs and any other
AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to .npy format. Handles lists and numpy
arrays.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses the response from .npy format to numpy array.
component_name (str): Optional. Name of the Amazon SageMaker inference
component corresponding to the predictor.
"""
super(SKLearnPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=serializer,
deserializer=deserializer,
component_name=component_name,
)
class SKLearnModel(FrameworkModel):
"""An Scikit-learn SageMaker ``Model`` that can be deployed to a SageMaker ``Endpoint``."""
_framework_name = defaults.SKLEARN_NAME
def __init__(
self,
model_data: Union[str, PipelineVariable],
role: Optional[str] = None,
entry_point: Optional[str] = None,
framework_version: Optional[str] = None,
py_version: str = "py3",
image_uri: Optional[Union[str, PipelineVariable]] = None,
predictor_cls: Optional[Callable] = SKLearnPredictor,
model_server_workers: Optional[Union[int, PipelineVariable]] = None,
**kwargs,
):
"""Initialize an SKLearnModel.
Args:
model_data (str or PipelineVariable): The S3 location of a SageMaker model data
``.tar.gz`` file.
role (str): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if it needs to access an AWS resource.
entry_point (str): Path (absolute or relative) to the Python source
file which should be executed as the entry point to model
hosting. If ``source_dir`` is specified, then ``entry_point``
must point to a file located at the root of ``source_dir``.
framework_version (str): Scikit-learn version you want to use for
executing your model training code. Defaults to ``None``. Required
unless ``image_uri`` is provided.
py_version (str): Python version you want to use for executing your
model training code (default: 'py3'). Currently, 'py3' is the only
supported version. If ``None`` is passed in, ``image_uri`` must be
provided.
image_uri (str or PipelineVariable): A Docker image URI (default: None).
If not specified, a default image for Scikit-learn will be used.
If ``framework_version`` or ``py_version`` are ``None``, then
``image_uri`` is required. If ``image_uri`` is also ``None``, then a ``ValueError``
will be raised.
predictor_cls (Callable[[string, sagemaker.session.Session], Any]): A function
to call to create a predictor with an endpoint name and
SageMaker ``Session``. If specified, ``deploy()`` returns the
result of invoking this function on the created endpoint name.
model_server_workers (int or PipelineVariable): Optional. The number of worker processes
used by the inference server. If None, server will use one
worker per vCPU.
**kwargs: Keyword arguments passed to the ``FrameworkModel``
initializer.
.. tip::
You can find additional parameters for initializing this class at
:class:`~sagemaker.model.FrameworkModel` and
:class:`~sagemaker.model.Model`.
"""
validate_version_or_image_args(framework_version, py_version, image_uri)
if py_version and py_version != "py3":
raise AttributeError(
"Scikit-learn image only supports Python 3. Please use 'py3' for py_version."
)
self.framework_version = framework_version
self.py_version = py_version
super(SKLearnModel, self).__init__(
model_data, image_uri, role, entry_point, predictor_cls=predictor_cls, **kwargs
)
self.model_server_workers = model_server_workers
def register(
self,
content_types: List[Union[str, PipelineVariable]] = None,
response_types: List[Union[str, PipelineVariable]] = None,
inference_instances: Optional[List[Union[str, PipelineVariable]]] = None,
transform_instances: Optional[List[Union[str, PipelineVariable]]] = None,
model_package_name: Optional[Union[str, PipelineVariable]] = None,
model_package_group_name: Optional[Union[str, PipelineVariable]] = None,
image_uri: Optional[Union[str, PipelineVariable]] = None,
model_metrics: Optional[ModelMetrics] = None,
metadata_properties: Optional[MetadataProperties] = None,
marketplace_cert: bool = False,
approval_status: Optional[Union[str, PipelineVariable]] = None,
description: Optional[str] = None,
drift_check_baselines: Optional[DriftCheckBaselines] = None,
customer_metadata_properties: Optional[Dict[str, Union[str, PipelineVariable]]] = None,
domain: Optional[Union[str, PipelineVariable]] = None,
sample_payload_url: Optional[Union[str, PipelineVariable]] = None,
task: Optional[Union[str, PipelineVariable]] = None,
framework: Optional[Union[str, PipelineVariable]] = None,
framework_version: Optional[Union[str, PipelineVariable]] = None,
nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
source_uri: Optional[Union[str, PipelineVariable]] = None,
model_card: Optional[Union[ModelPackageModelCard, ModelCard]] = None,
model_life_cycle: Optional[ModelLifeCycle] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.
Args:
content_types (list[str] or list[PipelineVariable]): The supported MIME types
for the input data.
response_types (list[str] or list[PipelineVariable]): The supported MIME types
for the output data.
inference_instances (list[str] or list[PipelineVariable]): A list of the instance
types that are used to generate inferences in real-time (default: None).
transform_instances (list[str] or list[PipelineVariable]): A list of the instance types
on which a transformation job can be run or on which an endpoint can be deployed
(default: None).
model_package_name (str or PipelineVariable): Model Package name, exclusive to
`model_package_group_name`, using `model_package_name` makes the Model Package
un-versioned (default: None).
model_package_group_name (str or PipelineVariable): Model Package Group name,
exclusive to `model_package_name`, using `model_package_group_name` makes the
Model Package versioned (default: None).
image_uri (str or PipelineVariable): Inference image uri for the container. Model class'
self.image will be used if it is None (default: None).
model_metrics (ModelMetrics): ModelMetrics object (default: None).
metadata_properties (MetadataProperties): MetadataProperties object (default: None).
marketplace_cert (bool): A boolean value indicating if the Model Package is certified
for AWS Marketplace (default: False).
approval_status (str or PipelineVariable): Model Approval Status, values can be
"Approved", "Rejected", or "PendingManualApproval"
(default: "PendingManualApproval").
description (str): Model Package description (default: None).
drift_check_baselines (DriftCheckBaselines): DriftCheckBaselines object (default: None).
customer_metadata_properties (dict[str, str] or dict[str, PipelineVariable]):
A dictionary of key-value paired metadata properties (default: None).
domain (str or PipelineVariable): Domain values can be "COMPUTER_VISION",
"NATURAL_LANGUAGE_PROCESSING", "MACHINE_LEARNING" (default: None).
sample_payload_url (str or PipelineVariable): The S3 path where the sample payload
is stored (default: None).
task (str or PipelineVariable): Task values which are supported by Inference Recommender
are "FILL_MASK", "IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION",
"IMAGE_SEGMENTATION", "CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
framework (str or PipelineVariable): Machine learning framework of the model package
container image (default: None).
framework_version (str or PipelineVariable): Framework version of the Model Package
Container Image (default: None).
nearest_model_name (str or PipelineVariable): Name of a pre-trained machine learning
benchmarked by Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str or PipelineVariable): Input object for the model
(default: None).
skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).
source_uri (str or PipelineVariable): The URI of the source for the model package
(default: None).
model_card (ModeCard or ModelPackageModelCard): document contains qualitative and
quantitative information about a model (default: None).
model_life_cycle (ModelLifeCycle): ModelLifeCycle object (default: None).
Returns:
A `sagemaker.model.ModelPackage` instance.
"""
instance_type = inference_instances[0] if inference_instances else None
self._init_sagemaker_session_if_does_not_exist(instance_type)
if image_uri:
self.image_uri = image_uri
if not self.image_uri:
self.image_uri = self.serving_image_uri(
region_name=self.sagemaker_session.boto_session.region_name,
instance_type=instance_type,
)
if not is_pipeline_variable(framework):
framework = (framework or self._framework_name).upper()
return super(SKLearnModel, self).register(
content_types,
response_types,
inference_instances,
transform_instances,
model_package_name,
model_package_group_name,
image_uri,
model_metrics,
metadata_properties,
marketplace_cert,
approval_status,
description,
drift_check_baselines=drift_check_baselines,
customer_metadata_properties=customer_metadata_properties,
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
framework=framework,
framework_version=framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
skip_model_validation=skip_model_validation,
source_uri=source_uri,
model_card=model_card,
model_life_cycle=model_life_cycle,
)
def prepare_container_def(
self,
instance_type=None,
accelerator_type=None,
serverless_inference_config=None,
accept_eula=None,
model_reference_arn=None,
):
"""Container definition with framework configuration set in model environment variables.
Args:
instance_type (str): The EC2 instance type to deploy this Model to.
This parameter is unused because Scikit-learn supports only CPU.
accelerator_type (str): The Elastic Inference accelerator type to
deploy to the instance for loading and making inferences to the
model. This parameter is unused because accelerator types
are not supported by SKLearnModel.
serverless_inference_config (sagemaker.serverless.ServerlessInferenceConfig):
Specifies configuration related to serverless endpoint. Instance type is
not provided in serverless inference. So this is used to find image URIs.
accept_eula (bool): For models that require a Model Access Config, specify True or
False to indicate whether model terms of use have been accepted.
The `accept_eula` value must be explicitly defined as `True` in order to
accept the end-user license agreement (EULA) that some
models require. (Default: None).
Returns:
dict[str, str]: A container definition object usable with the
CreateModel API.
"""
if accelerator_type:
raise ValueError("Accelerator types are not supported for Scikit-Learn.")
deploy_image = self.image_uri
if not deploy_image:
deploy_image = self.serving_image_uri(
self.sagemaker_session.boto_region_name, instance_type
)
deploy_key_prefix = model_code_key_prefix(self.key_prefix, self.name, deploy_image)
self._upload_code(key_prefix=deploy_key_prefix, repack=self.enable_network_isolation())
deploy_env = dict(self.env)
deploy_env.update(self._script_mode_env_vars())
if self.model_server_workers:
deploy_env[MODEL_SERVER_WORKERS_PARAM_NAME.upper()] = to_string(
self.model_server_workers
)
model_data_uri = (
self.repacked_model_data if self.enable_network_isolation() else self.model_data
)
return sagemaker.container_def(
deploy_image,
model_data_uri,
deploy_env,
accept_eula=accept_eula,
model_reference_arn=model_reference_arn,
)
def serving_image_uri(self, region_name, instance_type, serverless_inference_config=None):
"""Create a URI for the serving image.
Args:
region_name (str): AWS region where the image is uploaded.
instance_type (str): SageMaker instance type.
serverless_inference_config (sagemaker.serverless.ServerlessInferenceConfig):
Specifies configuration related to serverless endpoint. Instance type is
not provided in serverless inference. So this is used to determine device type.
Returns:
str: The appropriate image URI based on the given parameters.
"""
return image_uris.retrieve(
self._framework_name,
region_name,
version=self.framework_version,
py_version=self.py_version,
instance_type=instance_type,
serverless_inference_config=serverless_inference_config,
)