- Ailia input shape: (1, 3, 224, 224) RGB channel order
- Ailia input shape: (1, 3, 260, 260) for B2 model
- Pixel value range: [0, 1] before normalization
- Preprocessing: normalization using ImageNet statistics
emotion_class_count=4
+ idx=0
category=5 [ Neutral ]
prob=0.6248039603233337
+ idx=1
category=4 [ Happiness ]
prob=0.15010859072208405
+ idx=2
category=7 [ Surprise ]
prob=0.07648341357707977
+ idx=3
category=6 [ Sadness ]
prob=0.05946649610996246
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 hsemotion.py
If you want to specify the input image, put the image path after the --input
option.
$ python3 hsemotion.py --input IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 hsemotion.py --video VIDEO_PATH
High-Speed face Emotion recognition
PyTorch
ONNX opset = 11