-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathNeuralNetOptimized.py
322 lines (231 loc) · 10.7 KB
/
NeuralNetOptimized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import gzip
import cPickle
import os
import numpy as np
import random
import time
import json
def load_data():
"""
Loads data from file. Returns a tuple of 3 lists, containing training data,
validation data and test data in order.
The training data , validation and test data are tuples of two numpy arrays
of length 10,000 each. First of these is contains 784x1 numpy arrays which
represents the pixel intensities of the image. The second contains integers
representing the correct classification for examples of the corresponding
indexes.
"""
f = gzip.open('./mnist_expanded.pkl.gz', 'rb')
training_data, validation_data, test_data = cPickle.load(f)
return training_data, validation_data, test_data
def transform_data():
"""
Tranform the data into a format which is more feasible for training.
Returns a a 3-tuple of containing training data validation data and test
data in order.
The training data is now an list of 50,000 tuples representing each training
example. Each tuple consists of a 784x1 numpy array, representing pixel
intensities and a 10x1 numpy array, with 0 for all indexes but 1 for theindex
corresponding to the correct classification of the example image.
The training data is now an list of 50,000 tuples representing each training
example. Each tuple consists of a 784x1 numpy array, representing pixel
intensities and an integer corresponding to the correct classification of
the image example.
"""
data = load_data()
td, vd, ttd = data[0], data[1], data[2]
X_train = [np.reshape(x, (784,1)) for x in td[0]]
Y_train = [vectorize(y) for y in td[1]]
train_data = zip(X_train, Y_train)
X_val = [np.reshape(x, (784,1)) for x in vd[0]]
X_test = [np.reshape(x, (784,1)) for x in ttd[0]]
val_data = zip(X_val, vd[1])
test_data = zip(X_test, ttd[1])
return train_data, val_data, test_data
def vectorize(s):
"""
Returns a 10x1 numpy array with all indices 0 except for sth indice
"""
result = np.zeros((10,1))
result[s] = 1
return result
def vectorize_matrix(yv):
"""
Takes in an array, yv of ints.
Returns a matrix such that element ij, where i is the value at jth element
in array yv (i = yv[j]), is 1. All the other elements are 0.
"""
temp = np.zeros((10, yv.shape[0]))
for example in range(yv.shape[0]):
temp[yv[example]][example] = 1
return temp
class QuadCost(object):
@staticmethod
def fn(a,y):
return sum(0.5*np.linalg.norm(a-y, axis = 0)**2)
@staticmethod
def delta(z, a, y):
"""Return the error delta from the output layer."""
return (a-y) * sigmoid_prime(z)
class CECost(object):
@staticmethod
def fn(a, y):
return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
@staticmethod
def delta(z, a, y):
"""Return the error delta from the output layer."""
return (a-y)
class NeuralNet(object):
def __init__(self, sizes, cost = CECost, large_weights = False):
self.sizes = sizes
self.cost = cost
self.num_layers = len(sizes)
self.biases = [np.random.randn(x,1) for x in sizes[1:]]
if large_weights:
self.weights = [np.random.randn(x,y) for x,y in zip(sizes[1:], sizes[:-1])]
else:
self.weights = [np.random.randn(x,y)/np.sqrt(x) for x,y in zip(sizes[1:], sizes[:-1])]
def feedforward(self, inp):
a = inp
for b,w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w,a) + b)
return a
def SGD(self, td, epochs, mbs, eta, lmbda = 0.0, test_data = None, train_data = None, test_accuracy = True, test_cost = True, train_accuracy = True, train_cost = True):
"""
Stochastic Gradient Descent.
td: training data to perform SGD upon.
epochs: Number of epochs or full iterations over the dataset.
mbs: Size of mini-batch used.
eta: Learning Rate
test_data: If test data is present, the function tests the model over
test data, and returns the accuracy.
test_accuracy: prints accuracy of thr NN on test data
train_accuracy: prints accuracy of the model on training data
test_cost: prints the cost of NN on test data
train_cost: prints cost of NN of train data
"""
test_accuracies, test_costs, train_accuracies, train_costs = [], [], [], []
for x in xrange(epochs):
mini_batches = []
random.shuffle(td)
for i in range(0, len(td), mbs):
mini_batches.append(np.array(td[i:i+mbs]))
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta, lmbda, len(td))
if test_data:
print("Epoch :",x,"Completed")
if test_accuracy:
accuracy = self.evaluate(test_data)
print "Test Accuracy for this epoch is",round(accuracy,4)
test_accuracies.append(accuracy)
if test_cost:
cost = self.total_cost(test_data, lmbda, convert = True)
test_costs.append(cost)
print "Test Cost for this epoch is", round(cost, 3)
if train_accuracy:
accuracy = self.evaluate(train_data, convert = True)
train_accuracies.append(accuracy)
print "The training accuracy is", round(accuracy, 3)
if train_cost:
cost = self.total_cost(train_data, lmbda)
train_costs.append(cost)
print "Training Cost for this epoch is", round(cost, 3)
print
def update_mini_batch(self, mini_batches, eta, lmbda, n, mu = 0):
"""
Updates the parameters of the model using the backpropogation algorithm
over all examples.
mini_batches: array of mini_batches
eta : Learning Rate
lmbda: : L2-Regularisation constant
n: : Number of mini_batches
mu: : momentum coefficient. Default value 0 is equivalent mini-batch SGD.
"""
nabla_w = [np.zeros(w.shape) for w in self.weights]
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_v = [np.zeros(w.shape) for w in self.weights]
xv = np.asarray([x.ravel() for (x,y) in mini_batches]).transpose()
yv = np.asarray([y.ravel() for (x,y) in mini_batches]).transpose()
delta_b, delta_w = self.backprop(xv,yv)
nabla_w = [nw + ndw for nw, ndw in zip(nabla_w, delta_w)]
nabla_b = [nb + ndb for nb, ndb in zip(nabla_b, delta_b)]
self.weights = [mu*v-(eta/len(mini_batches))*nw for v, nw in zip(nabla_v, nabla_w)]
self.biases = [b-(eta/n)*nb for b, nb in zip(self.biases, nabla_b)]
def backprop(self,x,y):
"""
Backpropogation Algorithm. Calculates the gradient for the entire set
of paramters of a model given a training example and it's output using
Backpropogation.
"""
nabla_w = [np.zeros(w.shape) for w in self.weights]
nabla_b = [np.zeros(b.shape) for b in self.biases]
activation = x
activations = [x]
zs = []
for b,w in zip(self.biases, self.weights):
z = np.dot(w, activation) + b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
delta = (self.cost).delta(zs[-1], activations[-1], y)
nabla_b[-1] = delta.sum(1).reshape(len(delta), 1)
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
for i in xrange(2, self.num_layers):
delta = (np.dot(self.weights[-i + 1].transpose(), delta))*sigmoid_prime(zs[-i])
nabla_w[-i] = np.dot(delta, activations[-i-1].transpose())
nabla_b[-i] = delta.sum(1).reshape(len(delta), 1)
return nabla_b, nabla_w
def evaluate(self, test_data, convert = False):
"""
Evaluates the performance of the neural over test data.
Returns classification accuracy.
"""
xv = np.asarray([x.ravel() for (x,y) in test_data]).transpose()
if convert:
yv = np.asarray([np.argmax(y) for (x,y) in test_data]).transpose()
else:
yv = np.asarray([y for (x,y) in test_data]).transpose()
result = np.argmax(self.feedforward(xv), axis = 0)
return sum(yv == result)/float(yv.shape[0])
def cost_derivative(self, output_activations, y):
"""Return the vector of partial derivatives \partial C_x /
\partial a for the output activations."""
return (output_activations-y)
def total_cost(self, data, lmbda, convert = False):
"""
Returns the cost of Neural Network on data.
lamba: L2-Regularisation constant
"""
cost = 0.0
xv = np.asarray([x.ravel() for (x,y) in data]).transpose()
yv = np.asarray([y for (x,y) in data]).transpose()
a = self.feedforward(xv)
if convert:
yv = vectorize_matrix(yv)
cost = self.cost.fn(a, yv)/len(data)
cost += 0.5*(lmbda/len(data))*sum(np.linalg.norm(w)**2 for w in self.weights)
return cost
return cost
def save(self, filename):
"""Save the neural network to the file ``filename``."""
data = {"sizes": self.sizes,
"weights": [w.tolist() for w in self.weights],
"biases": [b.tolist() for b in self.biases],
"cost": str(self.cost.__name__)}
f = open(filename, "w")
json.dump(data, f)
f.close()
def sigmoid(z):
"""The sigmoid function."""
return 1.0/(1.0+np.exp(-z))
def sigmoid_prime(z):
"""Derivative of the sigmoid function."""
return sigmoid(z)*(1-sigmoid(z))
data = transform_data()
training_data, validation_data, test_data = data[0], data[1], data[2]
net = NeuralNet([784, 30, 10])
a = time.time()
net.SGD(training_data, 30, 10, 3.0, test_data = test_data, train_data=training_data)
#net.SGDa(training_data, 30, 10, 3.0, eval_data = test_data)
b = time.time()
print "The time taken for learning is", b-a