
Design for negative atoms

I shall start the explanation from the design in CastagnaPaper and then extend that to the

more general case in FrishThesis. In page 61 of the CastagnaPaper he provide 2

representations for negative atoms as,

1. For open records

(i.e union of records where is either undefined or and is either undefined or

).

2. For closed records

(I believe there is a typo in the last term in the paper)

This is union of all records in which is of type or undefined, records in which
is of type or undefined and records in which is and is and there is at

least another field defined.

I believe 1 is sufficient for nBallerina as well (though we may choose to represent every

thing using 2) and we can already represent this using our representation of mappings. So

I'll limit the rest to extending 2 to match ballerina's requirements. Since we can already

represent the first and second components of the union we shall focus only on the

representation of the final component.

In the foot note 29 (in page 47) Castagna calls these records "Quasi-open records"

defined as,

My intuition here is that in order to get the set of records where there must be "not-

undefined" fields other than to what we are doing is, take the set of records where

where fields other than to can be either undefined or any and subtract the set of

records where fields other than to is undefined.

Now let's extend this to our idea of open records where the rest must be of a given type

. Let,

where is the set of records where is , is and there is at least another field

whose type is not _

Based on the foot note 29 I think this is (a less general version of) the in FrishThesis

page 177, given as.

not({l1 : T1, l2 : T2, . . }) = {l1? : not(T1), . . }|{l2? : not(T2), . . }

l1 not(T1) l2

not(T2)

not({l1 : T1, l2 : T2}) = {l1? : not(T1), . . }|{l2? : not(T2), . . }|{l1 : T1, l2 : T2, +}

l1 not(T1) l2

not(T2) l1 T1 l2 T2

{l1 : T1, . . . , ln : Tn, +} = {l1 : T1, . . . , ln : Tn, . . } ∖ {l1 : ANY , . . . , ln : ANY }

l1 ln

l1 ln

l1 ln

Trest

not({l1 : T1, l2 : T2, . .Trest}) = {l1? : not(T1), . . }|{l2? : not(T2), . . }|R
∗

R∗ l1 T1 l2 T2

Trest

R∗ R

If my intuition for the "Quasi-open records" is correct what we need to do to get is take

the set of records where is , is and rest is any and subtract from it set of all

records where rest is . That is in terms of we will have equal to any and .

Example

Now to take as example lets consider not {| byte x; byte y; ...byte|}. This is
equivalent to,

That is the union of records where x is not byte or undefined (I assume not to include

undefined in ballerina) , y is not byte or undefined and records where x is byte and y is

byte and there is at least one field who is not byte. (That is)

Implementation details

In the previous section I limited the usage of only to places where we can not represent

what we need without . But based on theorem 9.5 in FrishThesis we should be able to

represent all records as a union of . (How to do this is not entirely clear to me at the

moment). Therefore in the actual implementation I think it makes more sense to unify the

representation of all records under (similar to how we have unified the representation of

open and closed records under open records).

R((tl)l∈L; t0;E) = {l1 = tl1; . . . ; ln = tln
; _ = t0} ∨s∈E {l1 = 1; . . . ; ln = 1; _ = ¬s}

R∗

l1 T1 l2 T2

Trest R t0 E = {Trest}

{| not(byte) x|} | {|not(byte) y|} | ({| byte x; byte y; ...any |} - {
any x; any y; ...byte});

R(t; any; byte)

R

R

R

R

