-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdemo_test.py
46 lines (38 loc) · 2.15 KB
/
demo_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
from util import util
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
div_num = opt.augment_num
print('total number of test images: %d' % len(dataset))
save_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.epoch)) # define the website directory
os.makedirs(save_dir, exist_ok=True)
if opt.eval:
model.eval()
for i, data in enumerate(dataset):
if i >= opt.num_test: # only apply our model to opt.num_test images.
break
for j in range(div_num):
model.set_input(data) # unpack data from data loader
model.test() # run inference
visuals = model.get_current_visuals() # get image results
img_path = str(data['img_path'][0])
_, image_name = os.path.split(img_path)
image_name, _ = os.path.splitext(image_name)
for label, im_data in visuals.items():
if label=='transfer_img_c':
save_path = os.path.join(save_dir, image_name + '_' + str(j) + '.jpg')
output_c = util.tensor2im(im_data)
util.save_image(output_c, save_path, aspect_ratio=opt.aspect_ratio)
print(f'[{i}], {image_name}, z num: {j}')