Requirement: torch, torchvision, numpy. As long as the version is not too old, it should be fine.
All possible model names are
BN models: resnet50
, resnet101
, resnet152
, resnext50_32x4d
, resnext101_32x8d
,
non-normalization models:
rescale50
, rescale101
, rescale152
, rescaleX50_32x4d
, rescaleX101_32x8d
,
fixup50
, fixup101
.
ResNet50
python imagenet.py --model_name=resnet50 --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--drop_conv=0.03 --drop_fc=0.3 --alpha=0.0 --multi_step=[30,60,90]
Rescale50
python imagenet.py --model_name=rescale50 --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--drop_conv=0.03 --drop_fc=0.3 --alpha=0.0 --multi_step=[30,60,90]
EUNNet50
python imagenet.py --model_name=eunnet50 --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--drop_conv=0.03 --drop_fc=0.3 --alpha=0.0 --multi_step=[30,60,90]
Using Mixup and no Dropout
python imagenet.py --model_name=eunnet50 --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--drop_conv=0.0 --drop_fc=0.0 --alpha=0.5 --multi_step=[30,60,90]
python imagenet.py --model_name=eunnet50 --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--drop_conv=0.0 --drop_fc=0.0 --alpha=0.7 --multi_step=[30,60,90]
No regularization
python imagenet.py --model_name=eunnet50 --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--drop_conv=0.0 --drop_fc=0.0 --alpha=0.0 --multi_step=[30,60,90]
Cosine Learning rate
python imagenet.py --model_name=eunnet50 --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--drop_conv=0.03 --drop_fc=0.3 --alpha=0.0 --multi_step=[]
rescale101
python imagenet.py --model_name=eunnet101 --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--drop_conv=0.03 --drop_fc=0.3 --alpha=0.0 --multi_step=[30,60,90]
rescaleX101_32x8d
python imagenet.py --model_name=rescaleX101_32x8d --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--drop_conv=0.03 --drop_fc=0.3 --alpha=0.0 --multi_step=[30,60,90]
rescaleX101_32x8d + cosline
python imagenet.py --model_name=rescaleX101_32x8d --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--drop_conv=0.03 --drop_fc=0.3 --alpha=0.0 --multi_step=[]
VGG19
python vgg_imgaenet.py --model_name=vgg19_noBN --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--multi_step=[60, 90]
VGG19 + cosine
python vgg_imgaenet.py --model_name=vgg19_noBN --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--multi_step=[] --bs256_lr=0.01
VGG19_BN
python vgg_imgaenet.py --model_name=vgg19_bn --train_path=TRAIN_PATH --val_path=VAL_PATH --batch_size=1024 \
--multi_step=[30, 60, 90]