-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathminibench.cpp
640 lines (486 loc) · 13.5 KB
/
minibench.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#include <cuda_runtime.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
typedef double (*benchmark_func_t)(void);
typedef long int_t;
typedef double real_t;
/**
* Helper function to get current timestamp,
* taken from STREAM Triad.
*/
double mysecond()
{
struct timeval tp;
struct timezone tzp;
gettimeofday(&tp, &tzp);
return (double) tp.tv_sec + (double) tp.tv_usec * 1.e-6;
}
/**
* Integer matrix multiplication benchmark.
*
* See also:
*
* https://www.math.utah.edu/~mayer/linux/bmark.html
*/
#define MATMUL_CPU_ARRAY_SIZE (1<<9)
#define MATMUL_CPU_NTIMES 4
#define ELEM(M, n, i, j) ((M)[(i) * (n) + (j)])
double benchmark_cpu_iops()
{
int n = MATMUL_CPU_ARRAY_SIZE;
int_t * A = (int_t *)malloc(n * n * sizeof(int_t));
int_t * B = (int_t *)malloc(n * n * sizeof(int_t));
int_t * C = (int_t *)malloc(n * n * sizeof(int_t));
for ( int i = 0; i < MATMUL_CPU_ARRAY_SIZE; i++ )
{
for ( int j = 0; j < MATMUL_CPU_ARRAY_SIZE; j++ )
{
ELEM(A, n, i, j) = 1;
ELEM(B, n, i, j) = 2;
ELEM(C, n, i, j) = 0;
}
}
double iops = 2.0 * n * n * n;
double min_time = INFINITY;
for ( int l = 0; l < MATMUL_CPU_NTIMES; l++ )
{
double t = mysecond();
for ( int i = 0; i < MATMUL_CPU_ARRAY_SIZE; i++ )
{
for ( int j = 0; j < MATMUL_CPU_ARRAY_SIZE; j++ )
{
ELEM(C, n, i, j) = 0;
for ( int k = 0; k < MATMUL_CPU_ARRAY_SIZE; k++ )
{
ELEM(C, n, i, j) += ELEM(A, n, i, j) * ELEM(B, n, i, j);
}
}
}
t = mysecond() - t;
#ifdef VERBOSE
printf("%f\n", t);
#endif
if ( l > 0 && t < min_time )
{
min_time = t;
}
}
free(A);
free(B);
free(C);
return iops / min_time / 1e9;
}
/**
* Floating-point matrix multiplication benchmark based on HPL.
*
* http://www.netlib.org/benchmark/hpl/
*/
double benchmark_cpu_flops()
{
int n = MATMUL_CPU_ARRAY_SIZE;
real_t * A = (real_t *)malloc(n * n * sizeof(real_t));
real_t * B = (real_t *)malloc(n * n * sizeof(real_t));
real_t * C = (real_t *)malloc(n * n * sizeof(real_t));
for ( int i = 0; i < MATMUL_CPU_ARRAY_SIZE; i++ )
{
for ( int j = 0; j < MATMUL_CPU_ARRAY_SIZE; j++ )
{
ELEM(A, n, i, j) = 1.0;
ELEM(B, n, i, j) = 2.0;
ELEM(C, n, i, j) = 0.0;
}
}
double flops = 2.0 * n * n * n;
double min_time = INFINITY;
for ( int l = 0; l < MATMUL_CPU_NTIMES; l++ )
{
double t = mysecond();
for ( int i = 0; i < MATMUL_CPU_ARRAY_SIZE; i++ )
{
for ( int j = 0; j < MATMUL_CPU_ARRAY_SIZE; j++ )
{
ELEM(C, n, i, j) = 0.0;
for ( int k = 0; k < MATMUL_CPU_ARRAY_SIZE; k++ )
{
ELEM(C, n, i, j) += ELEM(A, n, i, j) * ELEM(B, n, i, j);
}
}
}
t = mysecond() - t;
#ifdef VERBOSE
printf("%f\n", t);
#endif
if ( l > 0 && t < min_time )
{
min_time = t;
}
}
free(A);
free(B);
free(C);
return flops / min_time / 1e9;
}
/**
* Vector arithmetic benchmark based on STREAM Triad.
*
* http://www.cs.virginia.edu/stream/
*/
#define STREAM_ARRAY_SIZE 10000000
#define STREAM_NTIMES 4
double benchmark_cpu_mem_bw()
{
real_t * a = (real_t *)malloc(STREAM_ARRAY_SIZE * sizeof(real_t));
real_t * b = (real_t *)malloc(STREAM_ARRAY_SIZE * sizeof(real_t));
real_t * c = (real_t *)malloc(STREAM_ARRAY_SIZE * sizeof(real_t));
real_t scalar = 3.0f;
for ( int j = 0; j < STREAM_ARRAY_SIZE; j++ )
{
a[j] = 1.0;
b[j] = 2.0;
c[j] = 0.0;
}
double bytes = 3.0 * sizeof(real_t) * STREAM_ARRAY_SIZE;
double min_time = INFINITY;
for ( int k = 0; k < STREAM_NTIMES; k++ )
{
double t = mysecond();
for ( int j = 0; j < STREAM_ARRAY_SIZE; j++ )
{
a[j] = b[j] + scalar * c[j];
}
t = mysecond() - t;
#ifdef VERBOSE
printf("%f\n", t);
#endif
if ( k > 0 && t < min_time )
{
min_time = t;
}
}
free(a);
free(b);
free(c);
return bytes / min_time / (1 << 30);
}
/**
* Read a file from disk.
*/
#define READ_FILE_SIZE (1<<30)
#define READ_NTIMES 4
double benchmark_disk_read()
{
const char * filename = "tmp";
FILE * file;
char * data = (char *)malloc(READ_FILE_SIZE * sizeof(char));
for ( int i = 0; i < READ_FILE_SIZE; i++ )
{
data[i] = rand();
}
file = fopen(filename, "w");
fwrite(data, sizeof(char), READ_FILE_SIZE, file);
fclose(file);
double min_time = INFINITY;
for ( int k = 0; k < READ_NTIMES; k++ )
{
double t = mysecond();
file = fopen(filename, "r");
fread(data, sizeof(char), READ_FILE_SIZE, file);
fclose(file);
t = mysecond() - t;
#ifdef VERBOSE
printf("%f\n", t);
#endif
if ( k > 0 && t < min_time )
{
min_time = t;
}
}
free(data);
remove(filename);
return READ_FILE_SIZE / min_time / 1e9;
}
/**
* Write a file to disk.
*/
#define WRITE_FILE_SIZE (1<<30)
#define WRITE_NTIMES 4
double benchmark_disk_write()
{
const char * filename = "tmp";
FILE * file;
char * data = (char *)malloc(WRITE_FILE_SIZE * sizeof(char));
for ( int i = 0; i < WRITE_FILE_SIZE; i++ )
{
data[i] = rand();
}
double min_time = INFINITY;
for ( int k = 0; k < WRITE_NTIMES; k++ )
{
double t = mysecond();
file = fopen(filename, "w");
fwrite(data, sizeof(char), WRITE_FILE_SIZE, file);
fclose(file);
t = mysecond() - t;
#ifdef VERBOSE
printf("%f\n", t);
#endif
if ( k > 0 && t < min_time )
{
min_time = t;
}
}
free(data);
remove(filename);
return WRITE_FILE_SIZE / min_time / 1e9;
}
/**
* GPU kernel for gpu_flops benchmark.
*/
#define TILE_DIM 16
__global__
void benchmark_gpu_flops_kernel(int n, real_t * A, real_t * B, real_t * C)
{
// blockDim.x = TILE_DIM
// blockDim.y = TILE_DIM
__shared__ real_t tile_A[TILE_DIM][TILE_DIM];
__shared__ real_t tile_B[TILE_DIM][TILE_DIM];
int tx = threadIdx.x;
int ty = threadIdx.y;
int offset_x = blockIdx.x * blockDim.x + tx;
int offset_y = blockIdx.y * blockDim.y + ty;
int stride_x = blockDim.x * gridDim.x;
int stride_y = blockDim.y * gridDim.y;
for ( int i = offset_y; i < n; i += stride_y ) {
for ( int j = offset_x; j < n; j += stride_x ) {
real_t C_ij = 0;
// iterate through each tile pair in A, B
for ( int offset_t = 0; offset_t < n; offset_t += TILE_DIM ) {
// load tiles into shared memory
tile_A[ty][tx] = A[i * n + (offset_t + tx)];
tile_B[ty][tx] = B[(offset_t + ty) * n + j];
__syncthreads();
// update sum of products
for ( int k = 0; k < TILE_DIM; k++ ) {
C_ij += tile_A[ty][k] * tile_B[k][tx];
}
__syncthreads();
}
// save output value
C[i * n + j] = C_ij;
}
}
}
/**
* Floating-point matrix multiplication benchmark based on HPL.
*
* http://www.netlib.org/benchmark/hpl/
*/
#define MATMUL_GPU_ARRAY_SIZE (1<<12)
#define MATMUL_GPU_NTIMES 4
double benchmark_gpu_flops()
{
int n_devices;
cudaGetDeviceCount(&n_devices);
if ( n_devices == 0 ) {
return 0.0;
}
int n = MATMUL_GPU_ARRAY_SIZE;
real_t * A = (real_t *)malloc(n * n * sizeof(real_t));
real_t * B = (real_t *)malloc(n * n * sizeof(real_t));
real_t * C = (real_t *)malloc(n * n * sizeof(real_t));
real_t * d_A;
real_t * d_B;
real_t * d_C;
cudaMalloc(&d_A, n * n * sizeof(real_t));
cudaMalloc(&d_B, n * n * sizeof(real_t));
cudaMalloc(&d_C, n * n * sizeof(real_t));
for ( int i = 0; i < MATMUL_GPU_ARRAY_SIZE; i++ )
{
for ( int j = 0; j < MATMUL_GPU_ARRAY_SIZE; j++ )
{
ELEM(A, n, i, j) = 1.0;
ELEM(B, n, i, j) = 2.0;
ELEM(C, n, i, j) = 0.0;
}
}
cudaMemcpy(d_A, A, n * n * sizeof(real_t), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, n * n * sizeof(real_t), cudaMemcpyHostToDevice);
double flops = 2.0 * n * n * n;
double min_time = INFINITY;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
int nSMs;
cudaDeviceGetAttribute(&nSMs, cudaDevAttrMultiProcessorCount, 0);
for ( int l = 0; l < MATMUL_GPU_NTIMES; l++ )
{
cudaEventRecord(start);
dim3 block(TILE_DIM, TILE_DIM);
dim3 grid(2 * nSMs, 4);
benchmark_gpu_flops_kernel<<<grid, block>>>(n, d_A, d_B, d_C);
cudaEventRecord(stop);
cudaMemcpy(C, d_C, n * n * sizeof(real_t), cudaMemcpyDeviceToHost);
float t;
cudaEventElapsedTime(&t, start, stop);
#ifdef VERBOSE
printf("%f\n", t / 1000);
// double max_error = 0.0;
// for ( int i = 0; i < n * n; i++ ) {
// max_error = max(max_error, abs(C[i] - 2.0 * n));
// }
// printf("max_error = %f\n", max_error);
#endif
if ( l > 0 && t < min_time )
{
min_time = t;
}
}
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
free(A);
free(B);
free(C);
return flops / min_time / 1e6;
}
/**
* GPU kernel for gpu_mem_bw benchmark.
*/
__global__
void benchmark_gpu_mem_bw_kernel(int n, real_t * a, real_t * b, real_t * c, real_t scalar)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for ( int i = offset; i < n; i += stride ) {
a[i] = b[i] + scalar * c[i];
}
}
/**
* Vector arithmetic benchmark based on STREAM Triad.
*
* http://www.cs.virginia.edu/stream/
*/
double benchmark_gpu_mem_bw()
{
int n_devices;
cudaGetDeviceCount(&n_devices);
if ( n_devices == 0 ) {
return 0.0;
}
int n = STREAM_ARRAY_SIZE;
real_t * a = (real_t *)malloc(n * sizeof(real_t));
real_t * b = (real_t *)malloc(n * sizeof(real_t));
real_t * c = (real_t *)malloc(n * sizeof(real_t));
real_t scalar = 3.0f;
real_t * d_a;
real_t * d_b;
real_t * d_c;
cudaMalloc(&d_a, n * sizeof(real_t));
cudaMalloc(&d_b, n * sizeof(real_t));
cudaMalloc(&d_c, n * sizeof(real_t));
for ( int j = 0; j < n; j++ )
{
a[j] = 1.0;
b[j] = 2.0;
c[j] = 0.0;
}
cudaMemcpy(d_a, a, n * sizeof(real_t), cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, n * sizeof(real_t), cudaMemcpyHostToDevice);
double bytes = 3.0 * sizeof(real_t) * n;
double min_time = INFINITY;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
int nSMs;
cudaDeviceGetAttribute(&nSMs, cudaDevAttrMultiProcessorCount, 0);
for ( int k = 0; k < STREAM_NTIMES; k++ )
{
cudaEventRecord(start);
dim3 block(256);
dim3 grid(8 * nSMs);
benchmark_gpu_mem_bw_kernel<<<grid, block>>>(n, d_a, d_b, d_c, scalar);
cudaEventRecord(stop);
cudaMemcpy(a, d_a, n * sizeof(real_t), cudaMemcpyDeviceToHost);
float t;
cudaEventElapsedTime(&t, start, stop);
#ifdef VERBOSE
printf("%f\n", t / 1000);
// double max_error = 0.0;
// for ( int i = 0; i < n; i++ ) {
// max_error = max(max_error, abs(a[i] - 2.0));
// }
// printf("max_error = %f\n", max_error);
#endif
if ( k > 0 && t < min_time )
{
min_time = t;
}
}
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
free(a);
free(b);
free(c);
return bytes / min_time / 1e6;
}
typedef struct {
const char * name;
const char * format;
} format_t;
typedef struct {
const char * name;
benchmark_func_t func;
} benchmark_t;
int main(int argc, char **argv)
{
// parse command-line arguments
if ( argc != 2 )
{
fprintf(stderr, "usage: ./minibench <output-format>\n");
exit(-1);
}
char * fmt_name = argv[1];
// define output formats
format_t formats[] = {
{ "csv", "%s\t%0.6f" },
{ "trace", "#TRACE %s=%0.6f" }
};
int n_formats = sizeof(formats) / sizeof(format_t);
// select output format
format_t * fmt = NULL;
for ( int i = 0; i < n_formats; i++ )
{
if ( strcmp(formats[i].name, fmt_name) == 0 )
{
fmt = &formats[i];
}
}
if ( fmt == NULL )
{
fprintf(stderr, "error: invalid output format %s\n", fmt_name);
exit(-1);
}
// define benchmarks
benchmark_t benchmarks[] = {
{ "cpu_iops", benchmark_cpu_iops }, // GIOP/s
{ "cpu_flops", benchmark_cpu_flops }, // GFLOP/s
{ "cpu_mem_bw", benchmark_cpu_mem_bw }, // GiB/s
{ "disk_read", benchmark_disk_read }, // GB/s
{ "disk_write", benchmark_disk_write }, // GB/s
{ "gpu_flops", benchmark_gpu_flops }, // GFLOPS/s
{ "gpu_mem_bw", benchmark_gpu_mem_bw } // GB/s
};
int n_benchmarks = sizeof(benchmarks) / sizeof(benchmark_t);
// run benchmarks
for ( int i = 0; i < n_benchmarks; i++ )
{
benchmark_t *b = &benchmarks[i];
printf(fmt->format, b->name, b->func());
printf("\n");
}
return 0;
}