-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathbuild_dataset.py
72 lines (55 loc) · 2.6 KB
/
build_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import glob
import librosa
import numpy as np
import tensorflow as tf
import argparse
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _pad_wave(waveform, min_len):
if waveform.shape[0] < min_len:
return np.pad(waveform, [0, min_len - waveform.shape[0]], 'constant')
else:
return waveform
def _make_example(wf, sr, min_len):
audio_id = os.path.splitext(os.path.basename(wf))[0]
audio_id_bytes = bytes(audio_id, encoding='utf-8')
waveform, _ = librosa.load(wf, sr=sr)
padded_waveform = _pad_wave(waveform, min_len)
waveform_bytes = padded_waveform.astype(np.float32).tobytes()
feature = {
'audio_id': _bytes_feature(bytes(audio_id_bytes)),
'audio': _bytes_feature(waveform_bytes),
'length': _int64_feature(waveform.shape[0])}
example = tf.train.Example(features=tf.train.Features(feature=feature))
sec = waveform.shape[0] / float(sr)
padded = 1 if padded_waveform is not waveform else 0
return example.SerializeToString(), sec, padded
def build_dataset(wave_dir, save_path, sr=16000, min_len=64000, num_workers=10):
wave_files = glob.glob(os.path.join(wave_dir, '*.wav'))
wave_files = list(sorted(wave_files))
executor = ThreadPoolExecutor(max_workers=num_workers)
results = []
for wf in wave_files:
results.append(executor.submit(_make_example, wf, sr, min_len))
res_vals = [res.result() for res in tqdm(results)]
total_sec = sum([rv[1] for rv in res_vals])
writer = tf.python_io.TFRecordWriter(save_path)
padded_count = sum([rv[2] for rv in res_vals])
[writer.write(rv[0]) for rv in res_vals if rv[0] is not None]
writer.close()
print('total duration: {:.5f} hours'.format(total_sec / 3600.))
print('padded samples: {}/{} pieces'.format(padded_count, len(wave_files)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--wave_dir', required=True, help='input wave directory')
parser.add_argument('--save_path', required=True, help='tfrecord save path')
parser.add_argument('--sample_rate', default=16000, help='wave sample rate')
parser.add_argument('--min_len', default=16000, help='minimum length for padding')
parser.add_argument('--num_workers', default=10, help='number of workers')
args = parser.parse_args()
build_dataset(args.wave_dir, args.save_path, args.sample_rate, args.min_len)