-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
213 lines (168 loc) · 6.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from functools import partial
import tempfile
from pathlib import Path
from model import EntDataset, NED
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import ray
from ray import tune
from ray import train
from ray.train import Checkpoint, get_checkpoint
from ray.tune.schedulers import ASHAScheduler
import ray.cloudpickle as pickle
from ray.air import session
def make_argument_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str,
default= "./saved_models/trained_NED.pt",
help="name of model file")
parser.add_argument('--data_dir', type=str,
default="/home/tomcat/entrainment/fisher_processed_files/fisher_h5_files",
help='location of h5 files')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
return parser
def load_data(data_dir):
fdset_train = EntDataset(data_dir + '/train_Fisher_nonorm.h5')
fdset_val = EntDataset(data_dir + '/val_Fisher_nonorm.h5')
fdset_test = EntDataset(data_dir + '/test_Fisher_nonorm.h5')
return fdset_train, fdset_val, fdset_test
def train(config, data_dir):
net = NED()
device = 'cuda:0'
net.to(device)
# criterion = F.smooth_l1_loss()
optimizer = optim.Adam(net.parameters(), lr=config['lr'])
checkpoint = get_checkpoint()
if checkpoint:
with checkpoint.as_directory() as checkpoint_dir:
data_path = Path(checkpoint_dir) / 'data.pkl'
with open(data_path, 'rb') as fp:
checkpoint_state = pickle.load(fp)
start_epoch = checkpoint_state['epoch']
net.load_state_dict(checkpoint_state['net_state_dict'])
optimizer.load_state_dict(checkpoint_state['optimizer_state_dict'])
else:
start_epoch = 0
train_set, val_set, _ = load_data(data_dir)
train_loader = DataLoader(train_set, batch_size=128, shuffle=True, num_workers=8)
val_loader = DataLoader(val_set, batch_size=128, shuffle=True, num_workers=8)
# training loop
for epoch in range(start_epoch, 10):
net.train()
epoch_loss = 0
for batch_idx, (x, y) in enumerate(train_loader):
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
reconstructions = net(x)
# loss = criterion(reconstructions, y)
loss = F.smooth_l1_loss(reconstructions, y)
loss.backward()
optimizer.step()
epoch_loss += loss.data
print(f'===> Epoch {epoch} : Average loss {epoch_loss/len(train_loader.dataset):.4f}')
# validation loss
net.eval()
val_loss = 0
for idx, (x, y) in enumerate(val_loader):
x = x.to(device)
y = y.to(device)
reconstructions = net(x)
# loss = criterion(reconstructions,y)
loss = F.smooth_l1_loss(reconstructions, y)
val_loss += loss.data
val_loss /= len(val_loader.dataset)
print(f'===> Validation set loss {val_loss:.4f}')
checkpoint_data = {
'epoch': epoch,
'net_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}
with tempfile.TemporaryDirectory() as checkpoint_dir:
data_path = Path(checkpoint_dir) / 'data.pkl'
with open(data_path, 'wb') as fp:
pickle.dump(checkpoint_data, fp)
checkpoint = Checkpoint.from_directory(checkpoint_dir)
session.report({'loss': val_loss.cpu().item()}, checkpoint=checkpoint)
print("finished training!")
def test_accuracy(net, data_dir):
net.eval()
net.to("cuda:0") # just in case
hf = h5py.File(data_dir + 'test_Fisher_nonorm.h5', 'r')
X = np.array(hf['dataset'])
test_loss = 0
fake_test_loss = 0
Loss = []
Fake_loss = []
for idx, data in enumerate(X):
x = data[:228]
y = data[228:-1]
idx_same_speaker = list(np.where(X[:,-1] == data[-1]))[0]
ll = random.choice(list(idx_same_speaker - set([idx])))
y_fake = X[ll, 228:-1]
x = torch.from_numpy(x)
y = torch.from_numpy(y)
y_fake = torch.from_numpy(y_fake)
x = x.to(device)
y = y.to(device)
y_fake = y_fake.to(device)
z_x = net.embedding(x)
z_y = net.embedding(y)
z_y_fake = net.embedding(y_fake)
loss_real = F.smooth_l1_loss(z_x, z_y, size_average=False).data
loss_fake = F.smooth_l1_loss(z_x, z_y_fake, size_average=False).data
test_loss += loss_real
fake_test_loss += loss_fake
Loss.append(loss_real)
Fake_loss.append(loss_fake)
accuracy = float(np.sum(Loss < Fake_loss)) / Loss.shape[0]
return accuracy
if __name__ == '__main__':
parser = make_argument_parser()
args = parser.parse_args()
config = {
'lr': tune.loguniform(1e-4, 1e-1)
}
scheduler = ASHAScheduler(
metric='loss',
mode='min',
max_t=10,
grace_period=1,
reduction_factor=2
)
trainable_with_gpu = tune.with_resources(
partial(train, data_dir=args.data_dir),
{'cpu': 8, 'gpu': 1}
)
tuner = tune.Tuner(
trainable_with_gpu,
param_space=config,
tune_config=tune.TuneConfig(
num_samples=10,
scheduler=scheduler,
)
)
results = tuner.fit()
best_trial = result.get_best_trial("loss", "min", "last")
print(f"Best trial config: {best_trial.config}")
print(f"Best trial final validation loss: {best_trial.last_result['loss']}")
best_trained_model = NED()
device='cuda:0'
best_trained_model.to(device)
best_checkpoint = result.get_best_checkpoint(trial=best_trial, metric="loss", mode="min")
with best_checkpoint.as_directory() as checkpoint_dir:
data_path = Path(checkpoint_dir) / "data.pkl"
with open(data_path, "rb") as fp:
best_checkpoint_data = pickle.load(fp)
best_trained_model.load_state_dict(best_checkpoint_data["net_state_dict"])
test_acc = test_accuracy(best_trained_model, data_dir)
print("Best trial test set accuracy: {}".format(test_acc))