forked from bigscity-buaa/NASR
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
637 lines (529 loc) · 36.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import tensorflow as tf
import numpy as np
import random
import pickle
import copy
from collections import deque
import os
import math
os.environ['CUDA_VISIBLE_DEVICES']='0'
# Hyper Parameters for DAN
PRE_TRAIN = False
TEST = True
RESTORE = True
GAMMA = 1.0 # discount factor for target Q
INITIAL_EPSILON = 0.5 # starting value of epsilon
FINAL_EPSILON = 0.01 # final value of epsilon
batch_size = None # size of minibatch
input_steps = None
block_num = 16000#15500 #ofo为47702 出租车为15042
user_num = 15000
user_size = 128
loc_size = 384
time_num = 1000 # dive 24 hour into 96
day_num = 10 # weekday and weekend 7 day
lstm_size = 384
num_layers = 1
TRAIN_BATCH_SIZE = 100 #训练输入的batch 大小
INFERENCE_BATCH_SIZE = 1 #推断的时候输入的batch 大小
PRE_EPISODE = 600
NEG_SAMPLES = 9
NEXT_ACTION_NUM = 3
road_num = 15500
time_size = 56
day_size = 8
his_num = 5
his_length = 50
layers = 6
heads = 6
anchor_num = 64
#class CustomRNN(tf.nn.rnn_cell.BasicLSTMCell):
# def __init__(self, *args, **kwargs):
# kwargs['state_is_tuple'] = False # force the use of a concatenated state.
# returns = super(CustomRNN, self).__init__(*args, **kwargs) # create an lstm cell
# self._output_size = self._state_size # change the output size to the state size
# return returns
# def __call__(self, inputs, state):
# output, next_state = super(CustomRNN, self).__call__(inputs, state)
# return next_state, next_state # return two copies of the state, instead of the output and the state
class DAN():
# DQN Agent
def __init__(self):
# init experience replay
self.train_batches = []
self.test_batches = []
# init some parameters
self.token2cor = {}
self.sigma = 0.001 #高斯核的系数
self.gradients= None
self.create_attn_st_network()
# self.create_st_network()
# self.create_pgnn_heuristics_network()
self.create_heuristics_network()
self.all_saver = tf.train.Saver(max_to_keep=10)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.session = tf.InteractiveSession(config = config)
self.session.run(tf.global_variables_initializer())
# self.all_saver = tf.train.import_meta_graph("/data/wuning/AstarRNN/pretrain_test_policity_neural_network_epoch0.ckpt.meta")
# "/data/wuning/AstarRNN/pretrain_test_policity_neural_network_epoch0.ckpt")
# Init session
all_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
variables_to_restore = [v for v in all_variables if v.name.split('/')[0]=='st_network']
# print("variables:", variables_to_restore)
self.st_saver = tf.train.Saver(variables_to_restore, max_to_keep=10)
# self.all_saver = tf.train.Saver(max_to_keep=10)
def build_lstm(self, batch_size):
lstm = tf.nn.rnn_cell.GRUCell(lstm_size)
# lstm = CustomRNN(lstm_size)
# 添加dropout
drop = tf.nn.rnn_cell.DropoutWrapper(lstm, output_keep_prob=1.0)
# 堆叠
cell = tf.nn.rnn_cell.MultiRNNCell([drop for _ in range(num_layers)], state_is_tuple=False)
initial_state = cell.zero_state(batch_size, tf.float32)
print("GRU state:", initial_state)
return cell, initial_state
def create_attn_st_network(self):
with tf.variable_scope("st_network"):
# self.attn_mask = tf.placeholder(tf.float32, shape=(input_steps, input_steps))
self.st_known_ = tf.placeholder(tf.int64, shape=(batch_size, input_steps), name='st_known')
self.st_output_ = tf.placeholder(tf.int64, shape=(batch_size, input_steps), name='st_output')
self.st_time = tf.placeholder(tf.int64, shape=(batch_size, input_steps), name='st_time')
self.st_time_emb = tf.contrib.layers.embed_sequence(self.st_time, time_num, time_size, scope = "time_embedding")
self.st_user = tf.placeholder(tf.int64, shape=(batch_size, 1), name='st_user')
self.st_user_tile = tf.tile(self.st_user, [1, tf.shape(self.st_known_)[1]])
self.st_user_emb = tf.contrib.layers.embed_sequence(self.st_user_tile, user_num, user_size, scope = "user_embedding")
self.st_known_embedding = tf.contrib.layers.embed_sequence(self.st_known_, block_num, loc_size, scope = "location_embedding")
self.st_destination_ = tf.placeholder(tf.int64, shape=(batch_size, 1), name='p_destination')
self.st_destination_embedding = tf.contrib.layers.embed_sequence(self.st_destination_, block_num, loc_size, scope = "location_embedding", reuse = True)
cell, initial_state = self.build_lstm(tf.shape(self.st_known_)[0])
fusion = tf.concat([self.st_known_embedding, self.st_time_emb, self.st_user_emb], 2)
self.outputs, self.final_state = tf.nn.dynamic_rnn(cell, fusion, initial_state = initial_state, dtype=tf.float32) #batch * len * dim
self.rnn_outputs = self.outputs
# attn = tf.einsum("ijk,ikj->ijj", self.outputs, tf.transpose(self.outputs, [0, 2, 1]))
# attn = attn * self.attn_mask
# self.outputs = tf.transpose(tf.matmul(tf.transpose(self.outputs, [0, 2, 1]), attn), [0, 2, 1])
#
################ history module
self.his_user = tf.placeholder(tf.int64, shape=(batch_size, his_num, his_length), name='his_user')
self.his_tra = tf.placeholder(tf.int64, shape=(batch_size, his_num, his_length), name='his_tra')
self.his_time = tf.placeholder(tf.int64, shape=(batch_size, his_num, his_length), name='his_time')
self.his_padding_mask = tf.placeholder(tf.float32, shape=(batch_size, his_num, his_length), name='his_mask')
self.his_user_emb = tf.contrib.layers.embed_sequence(self.his_user, user_num, user_size, scope = "user_embedding", reuse = True)
self.his_tra_emb = tf.contrib.layers.embed_sequence(self.his_tra, block_num, lstm_size, scope = "location_embedding", reuse = True)
self.his_time_emb = tf.contrib.layers.embed_sequence(self.his_time, time_num, time_size, scope = "time_embedding", reuse = True)
self.his_tra_emb = tf.concat([self.his_tra_emb, self.his_time_emb, self.his_user_emb], 3) # batch_size his_num his_length lstm_size
self.his_tra_emb = tf.reshape(self.his_tra_emb, [-1, his_length, lstm_size + time_size + user_size])
self.initial_state_1 = cell.zero_state(tf.shape(self.his_tra_emb)[0], tf.float32)
self.his_outputs, self.his_final_state = tf.nn.dynamic_rnn(cell, self.his_tra_emb, initial_state = self.initial_state_1, dtype=tf.float32)
self.his_outputs = tf.reshape(self.his_outputs, [tf.shape(self.his_user)[0], tf.shape(self.his_user)[1], tf.shape(self.his_user)[2], lstm_size])
# batch_size len lstm_size * batch_size lstm_size his_num his_len
self.his_attn_1 = tf.einsum("iml,iljk->imjk", self.outputs, tf.transpose(self.his_outputs, [0, 3, 1, 2])) # batch len his_num his_len
self.his_attn_1 = self.his_attn_1 * tf.tile(tf.expand_dims(self.his_padding_mask, 1), [1, tf.shape(self.st_known_)[1], 1, 1])
# batch_size len his_num his_length * batch_size len his_num his_length lstm_size
self.his_outputs = tf.einsum("ijkl,ijklm->ijkm", self.his_attn_1, tf.tile(tf.expand_dims(self.his_outputs, 1),[1, tf.shape(self.st_known_)[1], 1, 1, 1])) #batch_size len his_num lstm_size
# batch_size len lstm_size * batch_size len lstm_size his_num
self.his_attn_2 = tf.einsum("ijk,ijkl->ijl", self.outputs, tf.transpose(self.his_outputs, [0, 1, 3, 2])) # batch_size len his_num
self.his_outputs = tf.einsum("ijk,ijkl->ijl", self.his_attn_2, self.his_outputs) #batch_size len lstm_size
self.outputs = tf.concat([self.outputs, self.his_outputs], 2)
#################
print(self.outputs.shape)
with tf.variable_scope('st_output'):
w_p1 = tf.Variable(tf.truncated_normal([3 * lstm_size, block_num], stddev=0.1))
b_p1 = tf.Variable(tf.zeros(block_num))
print(self.st_destination_embedding.shape, "--------------------")
self.st_layer_1 = tf.nn.relu(tf.matmul(tf.reshape(tf.concat([tf.tile(self.st_destination_embedding, [1, tf.shape(self.st_known_)[1], 1]), self.outputs], 2), [-1, 3 * lstm_size]), w_p1) + b_p1)
self.st_all = tf.reshape(self.st_layer_1, [tf.shape(self.st_known_)[0], tf.shape(self.st_known_)[1], block_num])
# self.st_all = tf.transpose(tf.reshape(tf.matmul(self.st_layer_1, w_p2) + b_p2, [tf.shape(self.st_known_)[1], tf.shape(self.st_known_)[0], block_num]), [1, 0, 2])
self.st_all_prob = tf.nn.softmax(self.st_all)
action_one_hot = tf.one_hot(self.st_output_, block_num)
self.st_all_cost = tf.nn.softmax_cross_entropy_with_logits(logits=self.st_all , labels=action_one_hot)
self.st_all_cost = tf.reduce_mean(self.st_all_cost)
self.st_all_optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.st_all_cost)
def create_step_by_step_st_network(self):
with tf.variable_scope("st_network"):
self.st_known_ = tf.placeholder(tf.int64, shape=(batch_size, input_steps), name='st_known')
self.neg_known_ = tf.placeholder(tf.int64, shape=(batch_size, input_steps), name='st_known')
st_known_embedding = tf.contrib.layers.embed_sequence(self.st_known_, block_num, lstm_size, scope = "location_embedding")
neg_known_embedding = tf.contrib.layers.embed_sequence(self.neg_known_, block_num, lstm_size, scope = "location_embedding", reuse = True)
print("--------------", st_known_embedding)
self.st_destination_ = tf.placeholder(tf.int64, shape=(batch_size), name='p_destination')
self.st_destination_embedding = tf.contrib.layers.embed_sequence(self.st_destination_, block_num, lstm_size, scope = "location_embedding", reuse = True)
cell, initial_state = self.build_lstm(tf.shape(self.st_known_)[0])
self.states, self.final_state = tf.nn.dynamic_rnn(cell, tf.transpose(st_known_embedding, [1, 0, 2]), initial_state = initial_state, dtype=tf.float32, time_major=True)
print("states:", self.states)
time = tf.shape(self.st_known_)[1] - 2
#开始构建负样本的图
initial_state = self.states[0]
print(initial_state)
def compute(i, cur_state, out):
output, cur_state = cell(neg_known_embedding[:, i + 1], self.states[i])
return i + 1, cur_state, out.write(i, output)
_, cur_state, out = tf.while_loop(
lambda a,b,c: a < time,
compute,
(0, initial_state, tf.TensorArray(tf.float32, time))
)
with tf.variable_scope('st_output'):
w_p1 = tf.Variable(tf.truncated_normal([lstm_size, 2*lstm_size], stddev=0.1))
b_p1 = tf.Variable(tf.zeros(2*lstm_size))
w_p2 = tf.Variable(tf.truncated_normal([2*lstm_size, 1], stddev=0.1))
b_p2 = tf.Variable(tf.zeros(1))
self.cutted_states = self.states[1:-1] #截头去尾
self.nest_outputs = tf.reshape(tf.add(self.st_destination_embedding, self.cutted_states), [-1, lstm_size])
self.st_layer_1 =tf.nn.relu(tf.matmul(self.nest_outputs, w_p1) + b_p1)
self.st = tf.matmul(self.st_layer_1, w_p2) + b_p2
self.infer_outputs = tf.add(self.st_destination_embedding, self.states[-1, :, :])
self.infer_st_layer_1 =tf.nn.relu(tf.matmul(self.infer_outputs, w_p1) + b_p1)
self.infer_st = tf.nn.sigmoid(tf.matmul(self.infer_st_layer_1, w_p2) + b_p2)
self.nest_neg_outputs = tf.reshape(tf.add(self.st_destination_embedding, out.stack()), [-1, lstm_size])
self.neg_layer_1 = tf.nn.relu(tf.matmul(self.nest_neg_outputs, w_p1) + b_p1)
self.neg = tf.matmul(self.neg_layer_1, w_p2) + b_p2
self.st_cost = tf.reduce_mean(- tf.log(tf.nn.sigmoid(self.st)) - tf.log(tf.nn.sigmoid( - self.neg)))
#############margin loss
# margin = 1.0 - self.st + self.neg#tf.slice(self.st, [0, 0], [TRAIN_BATCH_SIZE, 1]) + tf.slice(self.st, [TRAIN_BATCH_SIZE, 0], [TRAIN_BATCH_SIZE, 1])
# condition = tf.less(margin, 0.)
# self.st_cost = tf.reduce_mean(tf.where(condition, tf.zeros_like(margin), margin))
##############
self.st_optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.st_cost)
def history_attention(self, query, des):
# query batch_size * lstm_size
# des batch_size * lstm_size
with tf.variable_scope("st_network"):
# self.his_tra = tf.placeholder(tf.int64, shape=(batch_size, his_num, his_length))
# self.his_time = tf.placeholder(tf.int64, shape=(batch_size, his_num, his_length))
# self.his_day = tf.placeholder(tf.int64, shape=(batch_size, his_num, his_length))
# self.his_tra_emb = tf.contrib.layers.embed_sequence(self.his_tra, block_num, lstm_size, scope = "location_embedding", reuse = True)
# self.his_time_emb = tf.contrib.layers.embed_sequence(self.his_time, time_num, time_size, scope = "time_embedding", reuse = True)
# self.his_day_emb = tf.contrib.layers.embed_sequence(self.his_day, day_num, day_size, scope = "day_embedding", reuse = True)
# self.his_tra_emb = tf.concat([his_tra_emb, his_time_emb, his_day_emb], 2) # batch_size his_num his_length lstm_size
# self.his_tra_emb = tf.contrib.layers.fully_connected(self.his_tra_emb, lstm_size) #default relu activation
# print(self.his_tra_emb)
cell, initial_state = self.build_lstm(tf.shape(self.his_tra)[0])
def compute(i, cur_state, out, fin):
his_state, final_state = tf.nn.dynamic_rnn(cell, tf.transpose(self.his_tra_emb[:, i, :, :], [1,0,2]), initial_state = initial_state, dtype=tf.float32, time_major=True)
return i + 1, cur_state, out.write(i, his_state), fin.write(i, final_state)
_, cur_state, out, fin = tf.while_loop(
lambda a,b,c,d: a < his_num,
compute,
(0, initial_state, tf.TensorArray(tf.float32, his_num), tf.TensorArray(tf.float32, his_num))
)
out = out.stack()
#out tra_num * tra_len * batch_size * lstm_size -> batch_size * tra_num * tra_len * lstm_size query batch_size * lstm_size
weight_1 = tf.einsum('ijkl,il->ijk',tf.reshape(out, [tf.shape(self.his_tra_emb)[0], his_num, his_length, lstm_size]), query)
#his_tra_emb batch_size * his_num * his_length * lstm_size des batch_size * 1 * lstm_size
print(self.his_tra_emb, des, tf.squeeze(des, [1]))
weight_2 = tf.einsum('ijkl,il->ijk',self.his_tra_emb, tf.squeeze(des, [1]))
# tf.reshape(tf.matmul(tf.reshape(tf.transpose(self.his_tra_emb, [1,2,0,3]), [tf.shape(self.his_tra_emb)[0], -1, lstm_size]), des), [tf.shape(self.his_tra_emb)[1], tf.shape(self.his_tra_emb)[2], tf.shape(self.his_tra_emb)[0]])
local_weight = tf.nn.softmax((weight_1 + weight_2) * tf.cast(self.his_padding_mask, dtype=tf.float32)) #batch_size his_num his_length
tra_emb = tf.einsum('ijk,ijkl->ijl', local_weight, tf.transpose(out, [2, 0, 1, 3])) #batch_size * his_num * his_length * lstm_size -> batch_size * his_num *lstm_size
global_weight = tf.nn.softmax(tf.einsum('ijk,ik->ij', tra_emb, query)) #batch_size his_hum
return tf.einsum('ij,ijk->ik', global_weight, tra_emb) #batch_size lstm_size
def create_st_network(self):
with tf.variable_scope("st_network"):
self.st_known_ = tf.placeholder(tf.int64, shape=(batch_size, input_steps), name='st_known')
self.neg_known_ = tf.placeholder(tf.int64, shape=(batch_size, input_steps), name='neg_known')
self.st_output_ = tf.placeholder(tf.int64, shape=(batch_size, input_steps), name='st_output')
self.trans_mat = tf.placeholder(tf.int64, shape=(batch_size, input_steps, 70), name='tras_mat')
self.st_time = tf.placeholder(tf.int64, shape=(batch_size, input_steps), name='st_time')
self.st_time_emb = tf.contrib.layers.embed_sequence(self.st_time, time_num, time_size, scope = "time_embedding")
self.st_known_embedding = tf.contrib.layers.embed_sequence(self.st_known_, block_num, lstm_size, scope = "location_embedding")
self.neg_known_embedding = tf.contrib.layers.embed_sequence(self.neg_known_, block_num, lstm_size, scope = "location_embedding", reuse = True)
print("--------------", self.st_known_embedding)
self.st_destination_ = tf.placeholder(tf.int64, shape=(batch_size, 1), name='p_destination')
self.st_destination_embedding = tf.contrib.layers.embed_sequence(self.st_destination_, block_num, lstm_size, scope = "location_embedding", reuse = True)
print("--------------", self.st_destination_embedding)
# self.padding_mask = tf.placeholder(tf.int64, shape=(batch_size))
################ history module
self.his_tra = tf.placeholder(tf.int64, shape=(batch_size, his_num, his_length), name='his_tra')
self.his_time = tf.placeholder(tf.int64, shape=(batch_size, his_num, his_length), name='his_time')
self.his_day = tf.placeholder(tf.int64, shape=(batch_size, his_num, his_length), name='his_day')
self.his_padding_mask = tf.placeholder(tf.int64, shape=(batch_size, his_num, his_length), name='his_mask')
self.his_tra_emb = tf.contrib.layers.embed_sequence(self.his_tra, block_num, lstm_size, scope = "location_embedding", reuse = True)
self.his_time_emb = tf.contrib.layers.embed_sequence(self.his_time, time_num, time_size, scope = "time_embedding", reuse = True)
self.his_day_emb = tf.contrib.layers.embed_sequence(self.his_day, day_num, day_size, scope = "day_embedding", reuse = True)
self.his_tra_emb = tf.concat([self.his_tra_emb, self.his_time_emb, self.his_day_emb], 3) # batch_size his_num his_length lstm_size
self.his_tra_emb = tf.contrib.layers.fully_connected(self.his_tra_emb, lstm_size) #default relu activation
print("his_tra_emb:", self.his_tra_emb)
#################
cell, initial_state = self.build_lstm(tf.shape(self.st_known_)[0])
self.outputs, self.final_state = tf.nn.dynamic_rnn(cell, tf.transpose(self.st_known_embedding, [1, 0, 2]), initial_state = initial_state, dtype=tf.float32, time_major=True)
# self.neg_outputs, self.neg_final_state = tf.nn.dynamic_rnn(cell, tf.transpose(neg_known_embedding, [1, 0, 2]), initial_state = initial_state, dtype=tf.float32, time_major=True)
################ add historical attention
tra_len = tf.shape(self.st_known_)[1]
def compute(i, cur_state, ctx):
his_state = self.history_attention(self.outputs[i], self.st_destination_embedding)
return i + 1, cur_state, ctx.write(i, his_state)
_, cur_state, ctx = tf.while_loop(
lambda a,b,c: a < tra_len,
compute,
(0, initial_state, tf.TensorArray(tf.float32, tra_len))
)
ctx = ctx.stack()
# self.outputs = self.outputs + ctx
################
with tf.variable_scope('st_output'):
w_p1 = tf.Variable(tf.truncated_normal([lstm_size, 2*lstm_size], stddev=0.1))
b_p1 = tf.Variable(tf.zeros(2*lstm_size))
w_p2 = tf.Variable(tf.truncated_normal([2*lstm_size, block_num], stddev=0.1))
b_p2 = tf.Variable(tf.zeros(1))
print(self.st_destination_embedding, self.final_state[0][1], self.outputs)
self.st_layer_1 =tf.nn.relu(tf.matmul(tf.reshape(tf.add(tf.squeeze(self.st_destination_embedding, [1]), self.outputs[:, :, :]), [-1, lstm_size]), w_p1) + b_p1)
self.st_all =tf.transpose(tf.reshape(tf.matmul(self.st_layer_1, w_p2) + b_p2, [tf.shape(self.st_known_)[1], tf.shape(self.st_known_)[0], block_num]), [1, 0, 2])
self.st_all_prob = tf.nn.softmax(self.st_all)
self.mask_code = tf.cast(tf.reduce_sum(tf.one_hot(self.trans_mat, block_num, dtype=tf.uint8), axis=2), dtype=tf.bool)
# self.mask_code = tf.reduce_sum(tf.one_hot(self.trans_mat, block_num, dtype=tf.uint8), axis=2)
dummy_scores = tf.ones_like(self.st_all) * -99999.0
self.st = tf.where(self.mask_code, self.st_all, dummy_scores)
# self.st = tf.boolean_mask(self.st, self.mask_code)
print("st:", self.st)
# self.neg_layer_1 =tf.nn.relu(tf.matmul(tf.add(self.st_destination_embedding, self.neg_outputs[-1, :, :]), w_p1) + b_p1)
# self.neg = tf.matmul(self.neg_layer_1, w_p2) + b_p2
# print(self.st)
# margin = 1.0 - self.st + self.neg#tf.slice(self.st, [0, 0], [TRAIN_BATCH_SIZE, 1]) + tf.slice(self.st, [TRAIN_BATCH_SIZE, 0], [TRAIN_BATCH_SIZE, 1])
# condition = tf.less(margin, 0.)
# self.st_cost = tf.reduce_mean(tf.where(condition, tf.zeros_like(margin), margin))
# self.st_optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.st_cost)
##---------- cross entropy
self.action = tf.argmax(self.st, axis=1)
self.st_prob = tf.nn.softmax(self.st)
action_one_hot = tf.one_hot(self.st_output_, block_num)
self.st_cost = tf.nn.softmax_cross_entropy_with_logits(logits=self.st_all , labels=action_one_hot)
self.st_cost = tf.reduce_mean(self.st_cost)
self.st_optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.st_cost)
self.st_all_cost = tf.nn.softmax_cross_entropy_with_logits(logits=self.st_all , labels=action_one_hot)
self.st_all_cost = tf.reduce_mean(self.st_all_cost)
self.st_all_optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.st_all_cost)
def attn_head(self, inp, bias_mat, context, geo_dist):
# inp batch_size * node_num * feature_dim1
# out batch_size * node_num * feature_dim2
# context batch_size * feature_dim3
# geo distance batch_size * node_num * node_num
with tf.variable_scope('attention_weight'):
w_a1 = tf.Variable(tf.truncated_normal([lstm_size, 64], stddev=0.1))
b_a1 = tf.Variable(tf.zeros(64))
w_a2 = tf.Variable(tf.truncated_normal([lstm_size, 64], stddev=0.1))
b_a2 = tf.Variable(tf.zeros(64))
w_a3 = tf.Variable(tf.truncated_normal([64], stddev=0.1))
b_a3 = tf.Variable(tf.zeros(1))
inp_1 = tf.expand_dims(tf.einsum('ijk,kl->ijl', inp, w_a1) + b_a1, 2)
inp_2 = tf.expand_dims(tf.einsum('ijk,kl->ijl', inp, w_a1) + b_a1, 1)
# attn = tf.zeros([inp.shape[0], inp.shape[1], inp.shape[1], inp.shape[2]])
con = tf.matmul(context, w_a2) + b_a2
con = tf.expand_dims(con, 1)
con = tf.expand_dims(con, 1)
attn = inp_1 + inp_2 + con
logits = tf.einsum('ijkl,l->ijk', attn, w_a3) + b_a3
coefs = tf.nn.softmax(tf.nn.relu(logits) + bias_mat)
vals = tf.einsum('ijk,ikl->ijl', coefs, tf.squeeze(inp_1, 2))
return tf.nn.elu(vals)
def geo_pgnn_layer(self, feature, anchor_sets, sub_sets, context, pf_w, pf_b, out_w, out_b):
self.anchor_dist_mat = tf.placeholder(tf.float32, shape=(block_num, anchor_num), name='p_destination')
anchor_feature = tf.contrib.layers.embed_sequence(anchor_sets, block_num, loc_size, scope = "st_network/location_embedding", reuse = True)
self_feature = tf.contrib.layers.embed_sequence(sub_sets, block_num, loc_size, scope = "st_network/location_embedding", reuse = True)
anchor_feature = tf.stop_gradient(anchor_feature)
self_feature = tf.stop_gradient(self_feature)
#anchor_feature: batch_size * anchor_num * dim self_feature: batch_size * anchor_num + 2 * dim
anchor_feature = tf.expand_dims(anchor_feature, axis=1)
anchor_feature = tf.tile(anchor_feature, [1, 2, 1, 1])
self_feature = tf.expand_dims(self_feature, axis=2)
self_feature = tf.tile(self_feature, [1, 1, anchor_num, 1])
context = tf.tile(tf.expand_dims(tf.expand_dims(context, axis=1), axis=1), [1, 2, anchor_num, 1])
dist_compute = tf.gather(self.anchor_dist_mat, sub_sets)
messages = anchor_feature * ( 1 / (1+ tf.expand_dims(dist_compute, axis = 3)))
messages = tf.concat([messages, self_feature], axis=3)
messages = tf.nn.relu(messages)
out_position = tf.einsum('ijkl,l->ijk', messages, out_w) + out_b
out_structure = tf.reduce_mean(messages, axis = 1)
return out_position, out_structure
def pf_pgnn_layer(self, feature, anchor_sets, sub_sets, context, pf_w, pf_b, out_w, out_b):
# print(feature.shape)
# anchor_features = tf.gather(feature, anchor_sets[0], axis = 0)
# print("af:", anchor_features.shape, feature.shape, anchor_sets.shape)
# anchor_features = tf.tile(tf.expand_dims(anchor_features, axis=0), [16500, 1, 1])
# print("af:", anchor_features.shape)
# anchor_features = tf.reshape(anchor_features, (100, 100, 384))#(anchor_sets.shape[0], anchor_sets.shape[1], feature.shape[2]))
# self_feature = tf.expand_dims(feature, axis=1)
# self_feature = tf.tile(self_feature, [1, 100, 1])
anchor_feature = tf.contrib.layers.embed_sequence(anchor_sets, block_num, loc_size, scope = "st_network/location_embedding", reuse = True)
self_feature = tf.contrib.layers.embed_sequence(sub_sets, block_num, loc_size, scope = "st_network/location_embedding", reuse = True)
anchor_feature = tf.stop_gradient(anchor_feature)
self_feature = tf.stop_gradient(self_feature)
#anchor_feature: batch_size * anchor_num * dim self_feature: batch_size * anchor_num + 2 * dim
anchor_feature = tf.expand_dims(anchor_feature, axis=1)
anchor_feature = tf.tile(anchor_feature, [1, 2, 1, 1])
self_feature = tf.expand_dims(self_feature, axis=2)
self_feature = tf.tile(self_feature, [1, 1, anchor_num, 1])
context = tf.tile(tf.expand_dims(tf.expand_dims(context, axis=1), axis=1), [1, 2, anchor_num, 1])
dist_compute = tf.einsum('ijkl,l->ijk', tf.concat([self_feature, anchor_feature, context], 3), pf_w) + pf_b #batch_size 2 anchor_num
messages = anchor_feature * tf.expand_dims(dist_compute, axis = 3)
messages = tf.concat([messages, self_feature], axis=3)
messages = tf.nn.relu(messages)
out_position = tf.einsum('ijkl,l->ijk', messages, out_w) + out_b
out_structure = tf.reduce_mean(messages, axis = 1)
return out_position, out_structure
def create_pgnn_heuristics_network(self):
with tf.variable_scope("pf_network"):
pf_w = tf.Variable(tf.truncated_normal([3 * lstm_size], stddev=0.1))
pf_b = tf.Variable(tf.zeros(1))
with tf.variable_scope("output_network"):
out_w = tf.Variable(tf.truncated_normal([2 * lstm_size], stddev=0.1))
out_b = tf.Variable(tf.zeros(1))
out_pf_w = tf.Variable(tf.truncated_normal([2 * lstm_size], stddev=0.1))
out_pf_b = tf.Variable(tf.zeros(1))
with tf.variable_scope("value_network"):
with tf.variable_scope('value_output'):
w_v1 = tf.Variable(tf.truncated_normal([loc_size + 2 * lstm_size, lstm_size], stddev=0.1))
b_v1 = tf.Variable(tf.zeros(lstm_size))
w_v2 = tf.Variable(tf.truncated_normal([4 * anchor_num + lstm_size + 1, 1], stddev=0.1))
b_v2 = tf.Variable(tf.zeros(1))
self.loc_embedding = tf.placeholder(tf.float32, shape=(None, lstm_size),name='all_emb') #get tensor by name
self.anchor_set = tf.placeholder(tf.int32, shape=(batch_size, anchor_num), name='src')
self.sub_sets = tf.placeholder(tf.int32, shape=(batch_size, 2), name='sub_graph')
self.start_geo = tf.placeholder(tf.float32, shape=(batch_size, 2), name="start_geo")
self.end_geo = tf.placeholder(tf.float32, shape=(batch_size, 2), name="end_geo")
self.sub_geo = self.end_geo - self.start_geo
self.heu_dist = tf.sqrt(self.sub_geo[:, 0] * self.sub_geo[:, 0] + self.sub_geo[:, 1] * self.sub_geo[:, 1])
self.heu_dist = tf.expand_dims(self.heu_dist, -1)
# self.src = self.st_known_[:, -1]
# self.des = tf.squeeze(self.st_destination_, axis = 1)
self.stop_des_emb = tf.stop_gradient(self.st_destination_embedding)
self.stop_outputs = tf.stop_gradient(self.outputs[:, -1, :])
# print(self.stop_des_emb.shape, self.stop_outputs.shape)
self.value_layer_1 =tf.nn.relu(tf.matmul(tf.concat([self.stop_outputs, tf.squeeze(self.stop_des_emb, axis=1)], 1), w_v1) + b_v1)
# tf.concat([tf.tile(self.st_destination_embedding, [1, tf.shape(self.st_known_)[1], 1]), self.outputs], 2)
x = self.loc_embedding
x_position, _ = self.geo_pgnn_layer(x, self.anchor_set, self.sub_sets, self.value_layer_1, pf_w, pf_b, out_w, out_b)
p_position, _ = self.pf_pgnn_layer(x, self.anchor_set, self.sub_sets, self.value_layer_1, pf_w, pf_b, out_pf_w, out_pf_b)
self.p_position = p_position
self.x_position = x_position
# x = tf.contrib.layers.embed_sequence(self.sub_sets, block_num, lstm_size, scope = "st_network/location_embedding", reuse = True)
# x = tf.stop_gradient(x)
# p_position[:, -1, :], p_position[:, -2, :]
self.heuristics = tf.matmul(tf.concat([x_position[:, -2, :], x_position[:, -1, :], p_position[:, -2, :], p_position[:, -1, :], self.value_layer_1, self.heu_dist], 1), w_v2) + b_v2
# self.heuristics = tf.matmul(self.value_layer_1, w_v2) + b_v2
##### supervised loss
self.heuristics_input = tf.placeholder(tf.float32, shape=(batch_size), name='heuristics_input')
self.heuristics_cost = tf.reduce_mean(tf.square(self.heuristics_input - self.heuristics))
#####
# self.gradients = tf.gradients(self.heuristics_cost, [output_state])
self.value_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "value_network")
self.optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.heuristics_cost, var_list=self.value_variables)
# print("concat shape:", self.st_known_embedding[:, -1, :].shape, tf.squeeze(self.st_destination_embedding).shape, self.value_layer_1.shape)
# self.pf_output = tf.matmul(tf.concat([tf.stop_gradient(self.st_known_embedding[:, -1, :]), tf.stop_gradient(self.st_destination_embedding[:, 0, :]), self.value_layer_1], 1), tf.expand_dims(pf_w, 1)) + pf_b
# self.pf_cost = tf.reduce_mean(tf.square(self.heuristics_input - tf.squeeze(self.pf_output)))
# self.pf_optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.pf_cost, var_list=self.value_variables)
def create_heuristics_network(self):
with tf.variable_scope("value_network"):
with tf.variable_scope('value_output'):
w_v1 = tf.Variable(tf.truncated_normal([2*lstm_size, lstm_size], stddev=0.1))
b_v1 = tf.Variable(tf.zeros(lstm_size))
w_v2 = tf.Variable(tf.truncated_normal([lstm_size, 1], stddev=0.1))
b_v2 = tf.Variable(tf.zeros(1))
#self.outputs[-1, :, :]
self.stop_des_emb = tf.stop_gradient(self.st_destination_embedding)
self.stop_known_emb = tf.stop_gradient(self.st_known_embedding[:, -1, :])
self.stop_outputs = tf.stop_gradient(self.rnn_outputs[:, -1, :])
self.value_layer_1 =tf.nn.relu(tf.matmul(tf.concat([self.stop_outputs, tf.squeeze(self.stop_des_emb, axis=1)], 1), w_v1) + b_v1)
self.src_bias_mat = tf.placeholder(tf.float32, shape=(batch_size, None, None),name='src_adj_mat')
self.src_embedding = tf.placeholder(tf.float32, shape=(batch_size, None, lstm_size),name='src_emb') #get tensor by name
self.des_bias_mat = tf.placeholder(tf.float32, shape=(batch_size, None, None),name='des_adj_mat')
self.des_embedding = tf.placeholder(tf.float32, shape=(batch_size, None, lstm_size),name='des_emb') #get tensor by name
self.src_geo_mat = tf.placeholder(tf.float32, shape=(batch_size, None, None), name='geo_src')
self.des_geo_mat = tf.placeholder(tf.float32, shape=(batch_size, None, None), name='geo_des')
h_1 = self.src_embedding
for it in range(layers): # layers 层数
attns = []
if it == 5:
self.src_f = h_1
print('zzzzzzzzzzzzz')
print(h_1)
for _ in range(heads): # head数
attns.append(self.attn_head(h_1, self.src_bias_mat, self.stop_outputs, self.src_geo_mat))
h_1 = tf.concat(attns, axis=-1)
# h_1 batch_size node_num lstm_size
h_1 = h_1[:, 0, :]#tf.einsum('ij,ijk->ik', self.src_mask, h_1)
print("-------------------------------")
h_2 = self.des_embedding
for it in range(layers): # layers 层数
attns = []
if it == 3:
self.des_f = h_2
for _ in range(heads): # head数
attns.append(self.attn_head(h_2, self.des_bias_mat, self.stop_outputs, self.des_geo_mat))
h_2 = tf.concat(attns, axis=-1)
# h_1 batch_size node_num lstm_size
h_2 = h_2[:, 0, :]#tf.einsum('ij,ijk->ik', self.src_mask, h_2)
print(self.value_layer_1, h_1, h_2)
self.heuristics = tf.matmul(self.value_layer_1 + h_1 + h_2, w_v2) + b_v2 #self.value_layer_1 + h_1 + h_2
##### margin loss
# margin = 1.0 - tf.slice(self.heuristics, [0, 0], [TRAIN_BATCH_SIZE, 1]) + tf.slice(self.heuristics, [TRAIN_BATCH_SIZE, 0], [TRAIN_BATCH_SIZE, 1])
# condition = tf.less(margin, 0.)
# self.heuristics_cost = tf.reduce_mean(tf.where(condition, tf.zeros_like(margin), margin))
#####
##### supervised loss
self.heuristics_input = tf.placeholder(tf.float32, shape=(batch_size), name='heuristics_input')
self.heuristics_cost = tf.reduce_mean(tf.square(self.heuristics_input - self.heuristics))
#####
# self.gradients = tf.gradients(self.heuristics_cost, [output_state])
self.value_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
"value_network")
self.optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.heuristics_cost, var_list=self.value_variables)
def old_create_heuristics_network(self):
with tf.variable_scope("value_network"):
self.known_ = tf.placeholder(tf.int64, shape=(batch_size, input_steps), name='known')
known_embedding = tf.contrib.layers.embed_sequence(self.known_, block_num, lstm_size, scope = "value_location_embedding")
self.waiting_ = tf.placeholder(tf.int64, shape=(batch_size), name='waiting')
waiting_embedding = tf.contrib.layers.embed_sequence(self.waiting_, block_num, lstm_size, scope = "value_location_embedding", reuse = True)
self.destination_ = tf.placeholder(tf.int64, shape=(batch_size), name='destination')
destination_embedding = tf.contrib.layers.embed_sequence(self.destination_, block_num, lstm_size, scope = "value_location_embedding", reuse = True)
# network weights
fw_cell, fw_initial_state = self.build_lstm(tf.shape(self.known_)[0])
bw_cell, bw_initial_state = self.build_lstm(tf.shape(self.known_)[0])
# print("-------", tf.concat([known_embedding, tf.expand_dims(waiting_embedding, 1)], 1))
outputs, state = tf.nn.bidirectional_dynamic_rnn(fw_cell, bw_cell, tf.transpose(tf.concat([known_embedding, tf.expand_dims(waiting_embedding, 1)], 1), [1, 0, 2]), initial_state_fw=fw_initial_state, initial_state_bw=bw_initial_state, dtype=tf.float32, time_major=True)
initial_state = tf.add(state[0], state[1])
unstack_state = tf.unstack(initial_state, axis=0)
tuple_state = tuple([tf.contrib.rnn.LSTMStateTuple(unstack_state[idx][0], unstack_state[idx][1]) for idx in range(num_layers)])
hidden_states = tf.add(outputs[0], outputs[1])
distant_embedding = waiting_embedding + destination_embedding
# W1 = self.weight_variable([self.state_dim,20])
# b1 = self.bias_variable([20])
with tf.variable_scope('layer1'):
local_w1 = tf.Variable(tf.truncated_normal([lstm_size, 2*lstm_size], stddev=0.1))
local_b1 = tf.Variable(tf.zeros(2*lstm_size))
local_1_layer = tf.nn.relu(tf.matmul(distant_embedding, local_w1) + local_b1)
with tf.variable_scope('layer2'):
local_w2 = tf.Variable(tf.truncated_normal([2*lstm_size, lstm_size], stddev=0.1))
local_b2 = tf.Variable(tf.zeros(lstm_size))
local_2_layer = tf.nn.relu(tf.matmul(local_1_layer, local_w2) + local_b2)
# output_state = tf.reduce_mean(hidden_states, 0) + local_2_layer
# print(hidden_states, initial_state.shape, local_2_layer.shape)
output_state = hidden_states[-1, :, :] + local_2_layer
with tf.variable_scope('output'):
w_h = tf.Variable(tf.truncated_normal([lstm_size, 1], stddev=0.1))
b_h = tf.Variable(tf.zeros(1))
w_t = tf.Variable(tf.truncated_normal([lstm_size, 1], stddev=0.1))
b_t = tf.Variable(tf.zeros(1))
# self.heuristics = tf.nn.sigmoid(tf.matmul(output_state, w_h) + b_h)
self.heuristics = tf.matmul(output_state, w_h) + b_h
self.time = tf.nn.relu(tf.matmul(output_state, w_t) + b_t)
self.heuristics_input = tf.placeholder(tf.float32, [batch_size], name = "heuristics_input")
self.time_input = tf.placeholder(tf.float32, [batch_size], name = "time_input")
# half_batch_size = tf.div(self.heuristics.shape[0], 2)
print(tf.slice(self.heuristics, [0, 0], [TRAIN_BATCH_SIZE, 1]).shape, tf.slice(self.heuristics, [TRAIN_BATCH_SIZE, 0], [TRAIN_BATCH_SIZE, 1]).shape)
margin = 1.0 - tf.slice(self.heuristics, [0, 0], [TRAIN_BATCH_SIZE, 1]) + tf.slice(self.heuristics, [TRAIN_BATCH_SIZE, 0], [TRAIN_BATCH_SIZE, 1])
condition = tf.less(margin, 0.)
######## supervised learning
self.heuristics_input = tf.placeholder(tf.float32, shape=(batch_size), name='heuristics_input')
self.heuristics_cost = tf.reduce_mean(tf.square(self.heuristics_input - self.heuristics))
########
########### margin loss
# self.heuristics_cost = tf.reduce_mean(tf.where(condition, tf.zeros_like(margin), margin))
###########
# self.heuristics_cost = tf.reduce_mean(tf.square(self.heuristics_input - self.heuristics))
self.gradients = tf.gradients(self.heuristics_cost, [output_state])
# self.heuristics_cost = tf.reduce_mean(tf.square(self.heuristics_input - self.heuristics))
# y_reshaped = tf.reshape(y_one_hot, logits.get_shape())
# Softmax cross entropy loss
self.optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.heuristics_cost)