-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmk.clj
220 lines (154 loc) · 4.12 KB
/
mk.clj
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
(ns mk
(:require [clojure.string :as string])
(:refer-clojure :exclude [== conj disj cons list list? take]))
;;; First, we need a real cons cell implementation:
(declare list?)
(defprotocol ICons
(car [this])
(cdr [this]))
(deftype Cons [a d]
ICons
(car [this] a)
(cdr [this] d)
Object
(toString [this]
(if (proper-list? this)
(str "("
(string/join " " (map #(if (nil? %) "nil" (.toString %)) this)) ")")
(str "(" a " . " d ")")))
clojure.lang.Seqable
(seq [this] (seq-cons-list this)))
(defn cons [a d]
(Cons. a d))
(defn proper-list? [cell]
(or (nil? cell)
(and (list? cell)
(proper-list? (cdr cell)))))
(defn seq-cons-list [cell]
(when-not (nil? cell)
(clojure.core/cons (car cell) (cdr cell))))
(defn to-cons-list [l]
(when (seq l)
(cons (first l) (to-cons-list (rest l)))))
(defn list [& l]
(to-cons-list l))
(defn list? [v]
(instance? Cons v))
;;; µKanren begins here:
(defn lvar [c] #{c})
(defn lvar? [x] (set? x))
(def empty-state [{} 0])
(defn walk [u s]
(if (and (lvar? u) (contains? s u))
(recur (s u) s)
u))
(def mzero nil)
(defn unit [sc] (cons sc mzero))
(defn unify [u v s]
(let [u (walk u s)
v (walk v s)]
(cond
(and (lvar? u) (lvar? v) (= u v)) s
(lvar? u) (assoc s u v)
(lvar? v) (assoc s v u)
(and (list? u) (list? v))
(let [s (unify (car u) (car v) s)]
(and s (unify (cdr u) (cdr v) s)))
:else (and (= u v) s))))
(defn == [u v]
(fn [[s c]]
(let [s (unify u v s)]
(if s (unit [s c]) mzero))))
(defn callfresh [f]
(fn [[s c]]
((f (lvar c)) [s (inc c)])))
(defn mplus [$1 $2]
(cond
(fn? $1) (fn [] (mplus $2 ($1)))
(list? $1)
(cons (car $1) (mplus (cdr $1) $2))
:else $2))
(defn bind [$ g]
(cond
(fn? $) (fn [] (bind ($) g))
(list? $)
(mplus (g (car $)) (bind (cdr $) g))
:else mzero))
(defn disj [g1 g2] (fn [sc] (mplus (g1 sc) (g2 sc))))
(defn conj [g1 g2] (fn [sc] (bind (g1 sc) g2)))
(defn callgoal [g]
(g empty-state))
(defn pull [$]
(if (fn? $) (pull ($)) $))
(defn take [n $]
(if (zero? n) nil
(let [$ (pull $)]
(if (nil? $) nil (cons (car $) (take (- n 1) (cdr $)))))))
(defn take-all [$]
(let [$ (pull $)]
(if (nil? $) nil (cons (car $) (take-all (cdr $))))))
;; Infinite fives and sixes goal:
;; Naive form:
;; (defn fives [x]
;; (disj (== x 5) (fn [sc] ((fives x) sc))))
(defn fives [x]
(disj (== x 5) (fn [sc] (fn [] ((fives x) sc)))))
(defn sixes [x]
(disj (== x 6) (fn [sc] (fn [] ((sixes x) sc)))))
(def fives-and-sixes (callfresh (fn [x] (disj (fives x) (sixes x)))))
;; Then I say unto you: Send. Men. To. Summon. MACROS:
(defmacro fresh [vars & body]
`(callfresh
(fn [~(first vars)]
~(if (seq (rest vars))
`(fresh ~(rest vars) (conj+ ~@body))
`(conj+ ~@body)))))
(defn zzz [g] (fn [sc] (fn [] (g sc))))
(defn walk* [v s]
(let [v (walk v s)]
(cond
(lvar? v) v
(list? v)
(cons (walk* (car v) s) (walk* (cdr v) s))
:else v)))
(defn reify-1st [[s c]]
(walk* (lvar 0) s))
(defn run [n g]
(map reify-1st (take n (callgoal g))))
(defn run* [g]
(map reify-1st (take-all (callgoal g))))
(defmacro zzz [g]
`(fn [sc#] (fn [] (~g sc#))))
(defmacro conj+ [g0 & gs]
(if (seq gs)
`(conj (zzz ~g0) (conj+ ~@gs))
`(zzz ~g0)))
(defmacro disj+ [g0 & gs]
(if (seq gs)
`(disj (zzz ~g0) (disj+ ~@gs))
`(zzz ~g0)))
(defmacro conde [& gs]
`(disj+ ~@(map (fn [l] `(conj+ ~@l)) gs)))
;; And finally, appendo:
;; (defn appendo [l r out]
;; (disj
;; (conj (== l nil) (== r out))
;; (fresh [a d res]
;; (== (cons a d) l)
;; (== (cons a res) out)
;; (appendo d r res))))
;; (defn appendo [l r out]
;; (disj+
;; (conj+ (== l nil) (== r out))
;; (fresh [a d res]
;; (== (cons a d) l)
;; (== (cons a res) out)
;; (appendo d r res))))
(defn appendo [l r out]
(conde
((== nil l) (== r out))
((fresh [a d res]
(== (cons a d) l)
(== (cons a res) out)
(appendo d r res)))))
;; (run* (fresh [q a b] (== q (list a b)) (appendo a b (list 1 2 3 4 5))))