-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsedenion_trainer.py
516 lines (440 loc) · 22.7 KB
/
sedenion_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# coding:utf-8
##########################################################
# pytorch v1.0
# Alabi Bojesomo
# Khalifa University
# Abu Dhabi, UAE
# August 2020
##########################################################
import time
import settings
from torchvision import transforms
import os
from utils import time_to_str, Swish, R2_SCORE, MAAPE, NDEI, RMSE, RMSLE, MSE, MAE
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pytorch_model_summary import summary
from torch.optim.lr_scheduler import ReduceLROnPlateau
from datetime import datetime
import argparse
import torch.multiprocessing as mp
import torch
import torch.nn as nn
import torch.distributed as dist
torch.autograd.set_detect_anomaly(True)
from sedenion_loader import DataGenerator, ToTensor
from models_sedenion import (SedenionModel, SedenionModelScaled, SedenionModelScaled2,
optimizer_dict, criterion_dict)
import tempfile
from torch.nn.parallel import DistributedDataParallel as DDP
# opts = settings.options
parser = argparse.ArgumentParser()
parser.add_argument('--stack_input', type=bool, default=True, help='is the input to be stacked [True, False]')
parser.add_argument('--use_group_norm', type=bool, default=False, help='is the input to be stacked [True, False]')
parser.add_argument('--use_time_slot', type=bool, default=False, help='use the time slots encoding')
parser.add_argument('--net_type', default='sedenion', help='type of network', choices=['sedenion', 'real'])
parser.add_argument('--blk_type', default='resnet', help='type of block', choices=['resnet', 'densenet'])
parser.add_argument('--nb_layers', type=int, default=1, help='depth of resnet/densenet blocks') # 3
# working on sf divisible by 16
parser.add_argument('--sf', type=int, default=32, help='number of feature maps') # 16*4
parser.add_argument('--sf_grp', type=int, default=2, help='number of feature groups before expansion') # 2
parser.add_argument('--hidden_activation', default='relu', help='hidden layer activation') # need to try swish
parser.add_argument('--classifier_activation', default='hardtanh', help='classifier layer activation',
choices=['sigmoid', 'hardtanh', 'tanh'])
parser.add_argument('--modify_activation', type=bool, default=True, help='modify the range of hardtanh activation')
parser.add_argument('--inplace_activation', type=bool, default=True, help='inplace activation')
parser.add_argument('--epochs', type=int, default=30, help='number of epochs to train for')
parser.add_argument('--batch_size', type=int, default=6, help='batch size')
parser.add_argument('--dropout', type=float, default=0.0, help='dropout probability')
parser.add_argument('--normalize_data', type=bool, default=True, help='normalize the data or not')
parser.add_argument('--data_root', default='D:/KU_Works/Datasets/Traffic4cast_2019/2019/',
help='root directory for data')
parser.add_argument('--city', default='all', help='city data to train with or all ')
parser.add_argument('--seed', default=7, type=int, help='manual global seed')
parser.add_argument('--image_width', type=int, default=436, help='the height / width of the input image to network')
parser.add_argument('--image_height', type=int, default=495, help='the height / width of the input image to network')
parser.add_argument('--scale_height', type=int, default=1, help='factor to scale down image height / width')
parser.add_argument('--scale_width', type=int, default=1, help='factor to scale down image height / width')
parser.add_argument('--scale_type', default='pool', help='type of scaling to consider', choices=['pool', 'crop'])
parser.add_argument('--dataset', default='traffic', help='dataset to train with')
parser.add_argument('--n_frame_in', type=int, default=12, help='number of incoming frames')
parser.add_argument('--n_frame_out', type=int, default=6, help='number of frames to predict')
parser.add_argument('--times_out', type=str, default='5:10:15:30:45:60', help='actual timing out in minutes sep by :')
parser.add_argument('--n_channels', type=int, default=9, help='total number of channels')
parser.add_argument('--n_channels_out', type=int, default=8, help='number of channels to predict')
parser.add_argument('--optimizer', default='adam', help='optimizer to train with [sgd, adam]')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum term for sgd')
parser.add_argument('--beta_1', default=0.9, type=float, help='beta_1 term for adam')
parser.add_argument('--beta_2', default=0.999, type=float, help='beta_2 term for adam')
parser.add_argument('--epsilon', default=1e-8, type=float, help='epsilon term for adam')
parser.add_argument('--weight_decay', default=1e-8, type=float, help='weight decay for regularization')
parser.add_argument('--log_dir', default='logs', help='base directory to save logs')
parser.add_argument('--model_dir', default='', help='base directory to save logs')
parser.add_argument('--name', default='',
help='identifier for model if already exist')
parser.add_argument('--initial_epoch', type=int, default=0, help='number of epochs done')
parser.add_argument('--model_part', type=bool, default=False, help='use part based or not')
parser.add_argument('--model_num', type=int, default=1, choices=[1, 2, 3, 4])
opts = parser.parse_args()
net_dict = {'sede': 'sedenion', 'octo': 'octonion', 'quat': 'quaternion', 'comp': 'complex', 'real': 'real'}
net_type = net_dict[opts.net_type.lower()[:4]]
city_name = opts.city.upper()
seed = opts.seed
np.random.seed(seed)
torch.random.manual_seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
n_frame_in = opts.n_frame_in
n_frame_out = opts.n_frame_out
times_out = [int(t) for t in opts.times_out.split(':')]
n_channels = opts.n_channels
n_channels_out = opts.n_channels_out
h, w = opts.image_height, opts.image_width
sh, sw = opts.scale_height, opts.scale_width
h //= sh
w //= sw
scale = (sh, sw)
frame_shape = (h, w)
static_shape = (h, w, 7)
epochs = opts.epochs
batch_size = opts.batch_size
opt_type = opts.optimizer
lr = opts.lr
momentum = opts.momentum
beta_1 = opts.beta_1
beta_2 = opts.beta_2
epsilon = opts.epsilon
nb_layers = opts.nb_layers
data_root = opts.data_root
sf = opts.sf
stack_input = opts.stack_input
use_group_norm = opts.use_group_norm
# Save model and weights path
save_dir = os.path.join(os.getcwd(), 'saved_models')
os.makedirs(save_dir, exist_ok=True)
time_code = opts.name[opts.name.index('2020'):-3] if opts.name else '_'.join(np.array(time.localtime(), dtype=str)[:-3])
model_name = opts.name if opts.name else f'{city_name}_{net_type}_s{stack_input}_g{use_group_norm}_{time_code}.pt'
# model_name = f'{city_name}_{net_type}_s{stack_input}_g{use_group_norm}_{time_code}.pt'
model_path = os.path.join(save_dir, 'best', model_name)
ckpt_path = os.path.join(save_dir, 'ckpt', model_name)
# Load data
training_dir = [data_root, 'training'] if city_name == 'ALL' else os.path.join(data_root, city_name, 'training')
testing_dir = [data_root, 'testing'] if city_name == 'ALL' else os.path.join(data_root, city_name, 'testing')
validation_dir = [data_root, 'validation'] if city_name == 'ALL' else os.path.join(data_root, city_name, 'validation')
shuffle = True if city_name == 'ALL' else False
start_time = time.time()
training_datagen = DataGenerator(data_dir=training_dir, batch_size=batch_size, n_channels=n_channels,
n_frame_in=n_frame_in, # n_frame_out=n_frame_out,
n_out_channel=n_channels_out, times_out=times_out, shuffle=shuffle,
scale=scale, scale_type=opts.scale_type, use_time_slot=opts.use_time_slot,
model_part=opts.model_part, model_num=opts.model_num,
transform=transforms.Compose([ToTensor()]))
training_datagen_time = time.time() - start_time
print(f'training datagen loaded in {training_datagen_time} seconds')
start_time = time.time()
validation_datagen = DataGenerator(data_dir=validation_dir, batch_size=batch_size, # np.max([2, batch_size // np.prod(scale)]),
n_channels=n_channels,
n_frame_in=n_frame_in, # n_frame_out=n_frame_out,
n_out_channel=n_channels_out, times_out=times_out, scale=scale, # (1, 1)
scale_type=opts.scale_type, use_time_slot=opts.use_time_slot,
model_part=opts.model_part, model_num=opts.model_num,
transform=transforms.Compose([ToTensor()]))
print(f'validation datagen loaded in {time.time() - start_time} seconds')
# GET MODEL
start_time = time.time()
settings.init(opts) # add opts to global variables {required before calling FullModel
model = SedenionModelScaled()
model_time = time.time() - start_time
if opts.use_time_slot:
x_in = (torch.rand(1, 108, 495, 436), torch.rand(1, 8, 495, 436))
else:
x_in = (torch.rand(1, 108, 495, 436), torch.rand(1, 7, 495, 436))
_ = summary(model, x_in, print_summary=True)
del x_in
print(f'model created in {model_time} seconds')
opt_type = opts.optimizer
lr = opts.lr
momentum = opts.momentum
beta_1 = opts.beta_1
beta_2 = opts.beta_2
epsilon = opts.epsilon
criterion = criterion_dict['mse'] # nn.MSELoss()
metric_mae = criterion_dict['mae'] # nn.L1Loss()
other_args = {}
if opt_type == 'sgd':
other_args = {'lr': lr, 'momentum': momentum, 'weight_decay': opts.weight_decay, 'nesterov': True}
elif opt_type == 'adam':
other_args = {'lr': lr, 'eps': epsilon, 'betas': (beta_1, beta_2), 'weight_decay': 1e-4}
optimizer = optimizer_dict[opt_type](model.parameters(), **other_args)
# if 'optim_dict' in locals():
# optimizer.load_state_dict(optim_dict)
# del optim_dict
# torch.cuda.empty_cache()
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=3, cooldown=0, min_lr=1e-7)
CUDA = torch.cuda.is_available()
# start_time = time.time()
# model.compile(loss=criterion, optimizer=optimizer) # , metrics=['acc', 'mae'])
# print(f'model compiles in {time.time() - start_time} seconds')
print(opts)
verbose = 1
initial_epoch = opts.initial_epoch # 0
steps_per_epoch = None
steps_per_validation = None
parser1 = argparse.ArgumentParser()
args_in = parser1.parse_args()
args_in.model = model
args_in.training_datagen = training_datagen
args_in.validation_datagen = validation_datagen
args_in.criterion = criterion
args_in.optimizer = optimizer
args_in.epochs = epochs
args_in.metrics = [MAE(), RMSE(), RMSLE(), MAAPE(), R2_SCORE()] # NDEI(), MAAPE()]
args_in.verbose = verbose
args_in.initial_epoch = initial_epoch
args_in.callbacks = [scheduler]
args_in.steps_per_epoch = steps_per_epoch
args_in.steps_per_validation = steps_per_validation
args_in.save_dir = save_dir
args_in.model_name = model_name
args_in.model_path = model_path
args_in.ckpt_path = ckpt_path
args_in.time_code = time_code
def trainer(args_in):
parser2 = argparse.ArgumentParser()
parser2.add_argument('-n', '--nodes', default=1, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# parser2.add_argument('-g', '--gpus', default=1, type=int,
# help='number of gpus per node')
parser2.add_argument('-nr', '--nr', default=0, type=int,
help='ranking within the nodes')
args = parser2.parse_args()
args.args_in = args_in
# args.world_size = args.gpus * args.nodes
args.directory = args_in.save_dir # os.path.dirname(os.path.abspath(__file__)) # os.getcwd()
args.logs_dir = os.path.join(args.directory, 'logs')
args.best_dir = os.path.join(args.directory, 'best')
args.ckpt_dir = os.path.join(args.directory, 'ckpt')
os.makedirs(args.logs_dir, exist_ok=True)
os.makedirs(args.best_dir, exist_ok=True)
os.makedirs(args.ckpt_dir, exist_ok=True)
# os.environ['MASTER_ADDR'] = 'localhost'
# os.environ['MASTER_PORT'] = '12355'
time_1 = datetime.now()
# print(opts.epochs)
# mp.spawn(train_ddp, nprocs=args.gpus, args=(args,))
train(args)
print(f"Back from trainer in {str(datetime.now() - time_1)}")
def train(args):
logs_temp_file = os.path.join(args.logs_dir, '_'.join(['steps_log', args.args_in.time_code])+'.csv')
epochs_temp_file = os.path.join(args.logs_dir, '_'.join(['epochs_log', args.args_in.time_code])+'.csv')
CHECKPOINT_PATH = os.path.join(args.logs_dir, args.args_in.model_name) # 'checkpoint.pt')
# rank = args.nr * args.gpus + gpu
# print(rank)
# dist.init_process_group(backend='nccl', init_method='env://', world_size=args.world_size, rank=rank)
# torch.manual_seed(0)
# print(f'initialied gpu {gpu}')
model = args.args_in.model
num_params = model.num_params
# torch.cuda.set_device(gpu)
# model.cuda(gpu)
model = model.cuda()
batch_size = opts.batch_size # 100
# criterion = args.args_in.criterion.cuda(gpu)
criterion = args.args_in.criterion.cuda()
optimizer = args.args_in.optimizer # torch.optim.SGD(model.parameters(), 1e-4)
# # Wrap the model
# model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu], find_unused_parameters=True)
# load model if already exist
if (os.path.exists(args.args_in.model_path) or os.path.exists(args.args_in.ckpt_path)):
'''load the existing model accurately'''
print('load the existing model accurately')
if os.path.exists(args.args_in.model_path):
ckpt = torch.load(args.args_in.model_path)
else:
ckpt = torch.load(args.args_in.ckpt_path)
if 'state_dict' in ckpt:
state_dict = ckpt['state_dict']
optim_dict = ckpt['optimizer']
model.load_state_dict(state_dict)
optimizer.load_state_dict(optim_dict)
del ckpt, state_dict, optim_dict
torch.cuda.empty_cache()
else:
state_dict = ckpt
model.load_state_dict(state_dict)
del ckpt, state_dict
torch.cuda.empty_cache()
else:
print('Model does not exist in directory')
start = datetime.now()
verbose = args.args_in.verbose
training_datagen = args.args_in.training_datagen
validation_datagen = args.args_in.validation_datagen
steps_per_epoch = args.args_in.steps_per_epoch if args.args_in.steps_per_epoch else training_datagen.__len__()
steps_per_validation = args.args_in.steps_per_validation if args.args_in.steps_per_validation else validation_datagen.__len__()
# gpus = args.gpus # torch.cuda.device_count()
# steps_per_epoch //= gpus
# steps_per_validation //= gpus
callbacks = args.args_in.callbacks
metrics = args.args_in.metrics
# metrics_name = [x.__class__.__name__.lower()[:-4] for x in metrics]
metrics_name = [metric.name for metric in metrics]
logs = {'loss': 0}
logs.update({x: 0 for x in metrics_name})
train_dict = logs.copy()
validation_dict = {f'val_{key}': 0 for key in logs}
logs.update(validation_dict)
logs.update({'time': 0, 'lr': 0, 'epoch': 0})
logs_df = pd.DataFrame(columns=logs.keys())
epoch_str_width = len(str(opts.epochs))
best_loss = np.inf
# group = dist.new_group([rank_i for rank_i in range(args.world_size)])
# print(group)
for epoch in range(args.args_in.initial_epoch, opts.epochs):
training_datagen.on_epoch_end()
logs['lr'] = optimizer.param_groups[0]['lr']
train_df = pd.DataFrame(columns=list(train_dict.keys()))
validation_df = pd.DataFrame(columns=list(validation_dict.keys()))
model.train() # model.train(mode=True)
start_time = time.time()
"""###### Training ######## """
for step in range(steps_per_epoch):
# x, y = training_datagen.__getitem__(gpus * step + gpu)
x, y = training_datagen.__getitem__(step)
if not opts.normalize_data:
x = [x_*255. for x_ in x]
y *= 255.
x = [x_.cuda(non_blocking=True) for x_ in x]
y = y.cuda(non_blocking=True)
# Forward pass
optimizer.zero_grad()
output = model(x)
if not opts.normalize_data:
output = output * 255.
loss = criterion(output, y)
# Backward and optimize
# optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
for metric in metrics:
temp = metric(output, y)
train_dict.update({metric.name: temp.item()})
del x, y, output, temp
torch.cuda.empty_cache()
# for idx, metric in enumerate(metrics):
# train_dict[metrics_name[idx]] = metric(output, y).item()
train_dict['loss'] = loss.item()
train_df = train_df.append(train_dict, ignore_index=True)
time_so_far = (time.time() - start_time)
step_time = time_so_far / (step + 1)
if verbose >= 1:
time_spent_str = time_to_str(time_so_far)
time_str = time_to_str(step_time * (steps_per_epoch - step))
other_str = ' - '.join([f"{key}: {value:0.5f}" for key, value in train_dict.items()])
print(f'Epoch [{epoch+1}/{opts.epochs}] - Step [{step + 1}/{steps_per_epoch}] - ETA: '
f'[{time_spent_str}<{time_str}] - {other_str}', end='\r')
logs_temp = {'Epoch': epoch + 1, 'Step': step + 1}
logs_temp.update(train_dict)
logs_temp['city'] = opts.city.lower()
logs_temp_df = pd.DataFrame([logs_temp])
if os.path.exists(logs_temp_file):
logs_temp_df.to_csv(logs_temp_file, mode='a', index=False, header=False)
else:
logs_temp_df.to_csv(logs_temp_file, mode='a', index=False)
# del x, y, output, temp
# torch.cuda.empty_cache()
epoch_time = (time.time() - start_time)
train_dict = train_df.mean(axis=0).to_dict()
for key, value in train_dict.items():
logs[key] = value
logs['time'] = epoch_time
logs['epoch'] = epoch + 1
"""##### Validation #####"""
model.eval() # model.train(mode=False)
val_start_time = time.time()
for step in range(steps_per_validation):
step_time = time.time()
x, y = validation_datagen.__getitem__(gpus * step + gpu)
if not opts.normalize_data:
x = [x_*255. for x_ in x]
y *= 255.
x = [x_.cuda(non_blocking=True) for x_ in x]
y = y.cuda(non_blocking=True)
with torch.no_grad():
output = model(torch.cat(x, dim=1)) if isinstance(args.args_in.model, UNet_3Plus) else model(x)
if not opts.normalize_data:
output = output * 255.
val_loss = criterion(output, y)
for metric in metrics:
temp = metric(output, y)
dist.all_reduce(temp, op=dist.ReduceOp.SUM, group=group)
validation_dict.update({f'val_{metric.name}': temp.item()/args.world_size})
# for idx, metric in enumerate(metrics):
# validation_dict[f"val_{metrics_name[idx]}"] = metric(output, y).item()
del x, y, output, temp
torch.cuda.empty_cache()
validation_dict['val_loss'] = val_loss.item()
validation_df = validation_df.append(validation_dict, ignore_index=True)
# del x, y, output, temp, val_loss
# torch.cuda.empty_cache()
validation_dict = validation_df.mean(axis=0).to_dict()
for key, value in validation_dict.items():
logs[key] = value
logs['val_time'] = (time.time() - val_start_time)
logs['city'] = opts.city.lower()
logs_df = logs_df.append(logs, ignore_index=True)
# scheduler.step(epoch_val_loss)
if not callbacks: # is not None
for callback in callbacks:
callback.step(logs['val_loss'])
other_str = ' - '.join([f"{key}: {value:0.6f}" for key, value in logs.items() if not isinstance(value, str)])
print(f'epoch {epoch + 1:0{epoch_str_width}d}/{epochs} -- {other_str}')
"""Updating the epoch log state"""
epochs_temp_df = pd.DataFrame([logs])
if os.path.exists(epochs_temp_file):
epochs_temp_df.to_csv(epochs_temp_file, mode='a', index=False, header=False)
else:
epochs_temp_df.to_csv(epochs_temp_file, mode='a', index=False)
"""Saving the ckpts"""
checkpoint = {'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, args.args_in.ckpt_path.replace('.', f'_ckpt{epoch + 1}.'))
"""Saving the present best model"""
present_best_loss = logs['val_mse'] if 'val_mse' in logs else logs['val_loss']
if present_best_loss < best_loss:
# saving the best checkpoint
checkpoint = {'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, args.args_in.model_path)
# torch.save(checkpoint, os.paths.join(args.best, args.args_in.model_name + '.pt')) #also accepted
print(f'The model improves from {best_loss:0.6f} to {present_best_loss:0.6f} and has been saved in'
f' {args.args_in.model_path}')
best_loss = present_best_loss
else:
print(f'The model does not improve from {best_loss:0.6f}')
# Save the logs
if os.path.exists(args.args_in.model_path[:-3] + '.csv'):
logs_df.to_csv(args.args_in.model_path[:-3] + '.csv', mode='a', index=False, header=False)
else:
logs_df.to_csv(args.args_in.model_path[:-3] + '.csv', mode='a', index=False)
# Save the last state of the model
checkpoint = {'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, CHECKPOINT_PATH)
# save model parameters used
readme_file = os.path.join(save_dir, 'SedenionScaledReadMe.csv')
opts_dict = vars(argparse.Namespace(**{'filename': args.args_in.model_name[:-3], 'num_params': num_params,
'val_mse': best_loss}, **vars(opts)))
# opts_dict = vars(argparse.Namespace(**{'filename': model_name[:-3], 'num_params': num_params,
# 'val_loss': best_loss}, **vars(opts)))
opts_df = pd.DataFrame([opts_dict])
if os.path.exists(readme_file):
opts_df.to_csv(readme_file, mode='a', index=False, header=False)
else:
opts_df.to_csv(readme_file, mode='a', index=False)
print("Training complete in: " + str(datetime.now() - start))
if __name__ == '__main__':
trainer(args_in)