-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhh_cnexp_inline.mod
executable file
·132 lines (116 loc) · 3.09 KB
/
hh_cnexp_inline.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
TITLE hh_cnexp_inline.mod squid sodium, potassium, and leak channels
COMMENT
Adapted from hh.mod distributed with neuron. Removed tables.
This is the original Hodgkin-Huxley treatment for the set of sodium,
potassium, and leakage channels found in the squid giant axon membrane.
("A quantitative description of membrane current and its application
conduction and excitation in nerve" J.Physiol. (Lond.) 117:500-544 (1952).)
Membrane voltage is in absolute mV and has been reversed in polarity
from the original HH convention and shifted to reflect a resting potential
of -65 mV.
Remember to set celsius=6.3 (or whatever) in your HOC file.
See squid.hoc for an example of a simulation using this model.
SW Jaslove 6 March, 1992
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
? interface
NEURON {
SUFFIX hh_cnexp_inline
USEION na READ ena WRITE ina
USEION k READ ek WRITE ik
NONSPECIFIC_CURRENT il
RANGE gnabar, gkbar, gl, el, gna, gk
GLOBAL minf, hinf, ninf, mtau, htau, ntau
THREADSAFE : assigned GLOBALs will be per thread
}
PARAMETER {
gnabar = .12 (S/cm2) <0,1e9>
gkbar = .036 (S/cm2) <0,1e9>
gl = .0003 (S/cm2) <0,1e9>
el = -54.3 (mV)
}
STATE {
m h n
}
ASSIGNED {
v (mV)
celsius (degC)
ena (mV)
ek (mV)
gna (S/cm2)
gk (S/cm2)
ina (mA/cm2)
ik (mA/cm2)
il (mA/cm2)
minf hinf ninf
mtau (ms) htau (ms) ntau (ms)
}
? currents
BREAKPOINT {
SOLVE states METHOD cnexp
gna = gnabar*m*m*m*h
ina = gna*(v - ena)
gk = gkbar*n*n*n*n
ik = gk*(v - ek)
il = gl*(v - el)
}
INITIAL {
LOCAL alpha, beta, sum, q10
UNITSOFF
q10 = 3^((celsius - 6.3)/10)
alpha = .1 * vtrap(-(v+40),10)
beta = 4 * exp(-(v+65)/18)
sum = alpha + beta
mtau = 1/(q10*sum)
minf = alpha/sum
alpha = .07 * exp(-(v+65)/20)
beta = 1 / (exp(-(v+35)/10) + 1)
sum = alpha + beta
htau = 1/(q10*sum)
hinf = alpha/sum
alpha = .01*vtrap(-(v+55),10)
beta = .125*exp(-(v+65)/80)
sum = alpha + beta
ntau = 1/(q10*sum)
ninf = alpha/sum
UNITSON
m = minf
h = hinf
n = ninf
}
? states
DERIVATIVE states {
LOCAL alpha, beta, sum, q10
UNITSOFF
q10 = 3^((celsius - 6.3)/10)
alpha = .1 * vtrap(-(v+40),10)
beta = 4 * exp(-(v+65)/18)
sum = alpha + beta
mtau = 1/(q10*sum)
minf = alpha/sum
alpha = .07 * exp(-(v+65)/20)
beta = 1 / (exp(-(v+35)/10) + 1)
sum = alpha + beta
htau = 1/(q10*sum)
hinf = alpha/sum
alpha = .01*vtrap(-(v+55),10)
beta = .125*exp(-(v+65)/80)
sum = alpha + beta
ntau = 1/(q10*sum)
ninf = alpha/sum
UNITSON
m' = (minf-m)/mtau
h' = (hinf-h)/htau
n' = (ninf-n)/ntau
}
FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns.
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2)
}else{
vtrap = x/(exp(x/y) - 1)
}
}