-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrontend.py
98 lines (73 loc) · 3.19 KB
/
frontend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from PyQt6.QtWidgets import (QApplication, QWidget, QLineEdit, QPushButton,
QFrame, QHBoxLayout, QLabel, QVBoxLayout, QProgressBar)
from PyQt6.QtCore import Qt
from PyQt6 import uic
from pyqtgraph import PlotWidget
from digitdrawer import DigitDrawer
from qneural import QNeuralNetwork
from tele_graph import TelemetryGraph
class UI(QWidget):
def __init__(self):
super().__init__()
# loading the ui file with uic module
uic.loadUi('main.ui', self)
self.neural = QNeuralNetwork([784, 16, 16, 10])
# setup graphs
self.accuracyGraph = TelemetryGraph(self.findChild(PlotWidget, 'accuracyGraph'))
self.accuracyGraph.setTitle('Accuracy')
self.accuracyGraph.addLine()
self.accuracyGraph.x_limit = 10000
self.neural.trainingProgress.connect(self.on_training_update)
self.t_count = 0
self.findChild(QPushButton, 'startTraining').clicked.connect(self.start_training)
self.findChild(QPushButton, 'stopTraining').clicked.connect(self.stop_training)
self.findChild(QPushButton, 'loadNetwork').clicked.connect(self.load_network)
self.findChild(QPushButton, 'saveNetwork').clicked.connect(self.save_network)
# setup digit drawer
self.networkName = self.findChild(QLineEdit, 'networkName')
self.digitDrawer = self.findChild(DigitDrawer, 'digitDrawer')
self.findChild(QPushButton, 'clearButton').clicked.connect(self.digitDrawer.clearImage)
# setup prediction viewer
self.outputFrame = self.findChild(QFrame, 'outputFrame')
self.predictionLayout = self.outputFrame.layout()
self.outputBars = []
for i in range(10):
self.horiz = QWidget()
self.horiz.setLayout(QHBoxLayout())
label = QLabel(str(i))
label.setMinimumWidth(24)
label.setAlignment(Qt.AlignmentFlag.AlignCenter)
self.horiz.layout().addWidget(label)
self.outputBars.append(QProgressBar())
self.horiz.layout().addWidget(self.outputBars[-1])
self.predictionLayout.addWidget(self.horiz)
self.digitDrawer.edited.connect(self.on_drawer_edited)
def on_drawer_edited(self):
output = self.neural.inference(self.digitDrawer.getMatrix())
for i in range(len(output)):
self.outputBars[i].setValue(int(output[i] * 100))
def start_training(self):
self.neural.start_training()
def stop_training(self):
self.neural.stop_training()
def load_network(self):
self.neural.load_network(self.networkName.text())
def save_network(self):
if self.neural.alive:
self.neural.stop_training()
self.neural.save_network(self.networkName.text())
def on_training_update(self, data):
self.accuracyGraph.plotData(data[-1])
#self.t_count += 1
#if self.t_count == 1000:
# self.stop_training()
# self.save_network()
# self.start_training()
# self.t_count = 0
def closeEvent(self, event):
if self.neural.alive:
self.neural.stop_training()
app = QApplication([])
window = UI()
window.show()
app.exec()