We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? # to your account
我想通过 albert_chinese_tiny 对一句话进行特征提取,再用提取的向量做我自己的训练。 由于 albert_chinese_tiny 的输出是 (none, 512, 21148),因此我对其进行了 max pooling,输出为 (none, 512)。 想请教这样的实践是否正确
albert_chinese_tiny
(none, 512, 21148)
(none, 512)
if __name__ == '__main__': import keras_albert_model import keras_bert import numpy as np from tensorflow import keras model = keras_albert_model.load_brightmart_albert_zh_checkpoint('./albert_tiny_489k/') tokenizer = keras_bert.Tokenizer(keras_bert.load_vocabulary('./albert_tiny_489k/vocab.txt')) outputs = keras.layers.GlobalMaxPool1D(name='MaxPooling', data_format='channels_first')(model.outputs[0]) model = keras.models.Model(inputs=model.inputs, outputs=outputs) model.summary() token, segment = tokenizer.encode('I like it', max_len=512) prediction = model.predict([np.array([token]), np.array([segment])])[0] print(prediction, prediction.shape)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
我想通过
albert_chinese_tiny
对一句话进行特征提取,再用提取的向量做我自己的训练。由于
albert_chinese_tiny
的输出是(none, 512, 21148)
,因此我对其进行了 max pooling,输出为(none, 512)
。想请教这样的实践是否正确
The text was updated successfully, but these errors were encountered: